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Abstract

The main themes of this thesis are networked dynamic systems and related cooperative
control problems. We shall contribute a number of technical results to the stability theory
of switched positive systems, and present a new cooperative control paradigm that leads to
several cooperative control schemes which allow multi-agent systems to achieve a common
goal while, at the same time, satisfying certain local constraints. In this context, we also
discuss a number of practical applications for our results.

On a very abstract level, we first investigate the stability of an unforced dynamic system
or network that switches between different configurations. Next, a control input is included
to regulate the aggregate behaviour of the network. Lastly, looking at a particular instance
of this problem setting, an estimation component is added to the mix.

To be more specific, we first derive a number of necessary and sufficient, easily verifiable
conditions for the existence of common co-positive linear Lyapunov functions for switched
positive linear systems. This is particularly useful given the classic result that, roughly,
existence of such functions is sufficient for exponential stability of the switched system
under arbitrary switching. Such switched systems may represent a networked dynamic
system that switches between different configurations.

Next, we develop several cooperative control schemes for networked, dynamic multi-
agent systems. Several decentralised algorithms are devised that allow the network to
achieve what may be called implicit, constrained consensus: Constrained in the sense
that the aggregate behaviour of the network (assumed to be a function of the totality of its
states) should assume a prescribed value; implicit in the sense that the consensus is not
to be reached on the states directly, but on values that are a function of the states. This
can be used to assure inter-agent fairness in some sense, which makes this result relevant
to a large class of real-world problems. Initially, three algorithms will be given that work
in a variety of settings, including non-linear and uncertain settings, time-changing and
asymmetric network topologies, as well as asynchronous state updates. For these results,
the general assumption is that the aggregate behaviour of the network is made accessible to
each node so that it can be incorporated into the control algorithm.

Then, a somewhat more specific application is addressed, namely (algebraic) connec-
tivity control in wireless networks. This is a setting where the aggregate behaviour (the
network’s connectivity level, roughly an algebraic measure of how well information can
flow through the network) has to be estimated first before it can be regulated. To that end,
a fully decentralised scheme is developed that allows the connectivity level to be estimated
locally in each node. This estimate is then used to inform a decentralised scheme to adjust
the nodes’ interconnections in order to drive the network to the desired connectivity level.

Finally, three further real-world applications are discussed that rely on the results pre-
sented in this thesis.
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God is love.
Whoever lives in love lives in God,

and God in them.
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C H A P T E R 1

Introduction

In this first chapter we briefly establish the context for the work developed in
this thesis and give an overview of its structure. We also provide a number of
motivating examples to set the stage for some of the main results derived in
subsequent chapters.

Chapter contents

1.1 Overview and structure

1.2 Motivating examples

1.1 Overview and structure

With man’s innate desire and drive to expand, conquer, progress, improve and optimise,

the technological tools created in the process also never cease to grow. This growth may

happen both in terms of sheer size and in complexity. In the past century in particular, two

new key ingredients were added to the development: miniaturisation and communication.

On the one hand, systems increased in functionality but at the same time decreased in

size (computers are just one of the many examples for this trend). On the other, systems

also became more and more connected thanks to more efficient, faster, capable and reliable

communication means (think of the banking and stock trading systems, governments, or

indeed the Internet). Both trends combined lead to large systems composed of many

“small” but interconnected components rather than of one large, monolithic block. The

advantages of that are evident — due to the distributed nature of the system it would be

more robust to disturbances than a centralised system with its single point of failure, and

it could also better adapt to locally changing environments. However, it is also clear that

many individuals need to “cooperate” to achieve a common task.

Cooperation is typically defined as the process of working together toward the same

end, and cooperation is clearly paramount between the elements in such networked settings

as lack thereof would certainly not lead to the desired common goal. This may explain

the growing interest in recent decades in enabling large systems to exhibit such needed

cooperative behaviour.

1



2 CHAPTER 1. INTRODUCTION

In this context, the main theme of this Ph.D. thesis is networked dynamic systems

related to which three problems are studied. First, we will be looking at switched positive

systems which, in some sense, may be interpreted as networks of scalar systems that switch

between different topologies. Here, we shall make several contributions to the relatively

young research area of switched positive systems by providing a number of necessary and

sufficient stability conditions for switched positive linear systems. Second, we will investi-

gate networks of systems with switching topologies that have some form of global control

input in order to regulate the network’s aggregate behaviour. In particular, we will de-

rive a number of decentralised algorithms that enable multi-agent systems to cooperatively

achieve a common goal while additionally fulfilling certain localised constraints. Third, an

extension of this problem is studied where an estimation component needs to be added to

the network in order to first estimate the aggregate network behaviour before it can be

cooperatively regulated.

Stability of switched positive systems can be seen as a sub-problem of general systems

theory and switched systems in particular. Cooperative control, in turn, is a relatively novel

concept that is closely related to several “traditional” control approaches, in particular

large-scale systems, decentralised control, and more recently multi-agent systems. These

relevant fields of research will first be discussed in detail in the literature review in the next

chapter. We shall then present our main results in Chapters 3, 4 and 5. The applications

chapter, Chapter 6, will complement the theoretical contributions by providing several

applications where those results could be of use. Finally, we draw some conclusions from

our work and suggest future directions.

Before moving on to the literature review, let us give a few motivating examples for

the work carried out in this thesis.

1.2 Motivating examples

1.2.1 Stability of a wireless network power control algorithm

Various radio communication technologies rely on the so-called Code Division Multiple

Access (CDMA) method to select and use radio channels for broadcast and reception,

Schulze and Lüders (2005).1 It is based on the general idea in data communications

that several transceivers should simultaneously utilise a single communication channel

to transmit and receive information in order to maximise spacial and temporal use of

the spectrum. This concept is known as the multiple access concept. However, with

multiple sources broadcasting at the same time, the broadcast power needs to be carefully

adjusted and controlled as each transmission between one pair of nodes interferes with the

communication between other nearby nodes in the network. Thus, a compromise needs

1 To name two of the most high-profile applications, the Global Positioning System (GPS) as well as
mobile phone standards cdmaOne and CDMA2000 are based on this method.
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to be found for each communication pair — on the one hand power output should be

minimised to limit the interference with other nodes’ communications, but on the other it

must be large enough to guarantee a stable communication link (i. e. the signal needs to

be by a factor larger than the local interference level in order to be correctly picked up by

the receiver).

A seminal power control algorithm for wireless networks is the Foschini-Miljanic (FM)

algorithm, Foschini and Miljanic (1993), which works in a fully decentralised way. It

adjusts and minimises each node’s power output all while observing certain quality of

service requirements. This algorithm has been proved to be stable to various kinds of

perturbations and adverse conditions. However, only recently has it been shown that it is

stable even in the presence of time-varying time-delays.

At the heart of this result (presented in Section 6.1) is a delay-independent stability

property of switched positive systems that ultimately relies on the existence of certain types

of Lyapunov functions. Necessary and sufficient conditions and checks for their existence,

as derived in the third chapter, are thus relevant to a large class of real world problems.

1.2.2 Emissions control in traffic networks

A second example would be a network of cars driving around in a city, where the city

council is trying to implement some form of CO2 emissions control. Assume the overall

objective would be that the aggregate emissions of all cars participating in the scheme do

not exceed a prescribed level. Fairness dictates that no car should be allowed to pollute

more than others, thus the cars should adjust their behaviour so that they all produce the

same CO2 emissions (in other words, reach a consensus on the emissions). But assuming

that the emissions are a direct function of the cars’ speed (and that different cars have

different efficiency levels, depending on their weight, engine, etc.) some cars may be able

to drive faster than others for a given level of permissible emissions.

In order to implement the emissions control scheme the council may place a number

of monitoring units around the city to measure the overall emissions level and broadcast

that (global) information to all the cars in the network, along with the value of the desired

or allowable emission level. Clearly, the cars need to cooperate in order to achieve the

desired emission level since the city-wide (traffic related) emissions are just the sum of the

individual contributions.

To make such cooperation possible we assume that the cars are able to broadcast their

own emission level to vehicles in their vicinity. The so-established communication network

can then be used to reach an “agreement” among the cars on a common emission level.

Additionally, incorporating the information from the city-wide emissions broadcast, the

cars should now be able to conjointly adjust their speed so that the resulting emissions

match those of other cars in the network, and also so that the overall emissions produced

throughout the city reach the admissible level.
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Highlighting some of the particularities of this setting we note that the topology of the

resulting communication network would be constantly changing as the cars drive around

and move in and out of range from each other; the communication network will not neces-

sarily be symmetric — some cars may not be able to broadcast as far as others, or some

of the transmissions may be lost; and the dependence of emissions on the driving speed is

usually non-linear.

Problems of this type will be considered in Chapter 3 and a real-life application along

these lines is discussed in the fifth chapter.

1.2.3 Topology control in wireless sensor networks

Lastly, consider a different type of wireless network, this time one that interconnects small

sensor units or motes. Assume that a large number of such battery powered motes are

dropped roughly uniformly distributed over a defined area. The (usually identically built)

motes would be equipped with a battery, a transceiver, one or more sensors and some kind

of processing unit. Networks of this type are very common and widely used, Akyıldız et al.

(2002). The radio in the motes is used to form a network between all the nodes, and one

objective here could be to adjust the broadcast power of their radios so that this network

reaches a prescribed level of (algebraic) connectivity. However, one may additionally re-

quire that all nodes should last equally long in terms of battery power. The first objective

would be important for certain types of algorithms whose rate of convergence depends on

the level of connectedness of the graph they evolve on, and the second objective guarantees

maximum life-time of the network without node failures (due to power shortage).

Clearly, the power used by the radio directly influences the time-to-live (TTL) of a

node. However, the overall power consumption may vary among nodes depending on their

individual workload, and the batteries may also have slightly varying initial charges. As-

suming that the radio is the biggest power consumer in each mote, they will be able to

influence their TTL by varying the power setting of their radios. But now, depending on

the power used, each node can broadcast information to more or fewer nodes in its vicinity.

As different nodes will use different power settings, the resulting topology of the commu-

nication graph will generally be asymmetric, and changing over time. In this setting, we

would like to find a decentralised algorithm that adjusts the node’s power setting so that

on the one hand all nodes eventually have equal TTLs, but on the other hand also guaran-

teeing a certain guaranteed level of connectedness of the resulting communication network.

This means that again the objective is a combination of local and global constraints, with

additionally an identification component involved.

This problem setting will later be studied in detail in the fourth chapter.

With these motivating examples in mind, let us know move on to the literature review.
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Literature Review

This second chapter reviews related work reported in the literature and puts
the thesis into the context of existing research. In particular, we discuss the
areas of switched positive systems, large-scale systems, decentralised control,
and cooperation in networked multi-agent systems.

Chapter contents

2.1 Introduction

2.2 Switched Systems and Positive Systems

2.3 Large-Scale Systems and Decentralised Control

2.4 Cooperation and consensus

2.1 Introduction

As we mentioned in the introduction, three areas of research are particularly relevant to

this thesis. Before going into the details, let us briefly state their key objectives:

– Switched positive systems focus on systems whose overall dynamics switch over time

between a number of distinct constituent behaviours or dynamics, and whose states

are only defined in and thus confined to the non-negative orthant.

– Large-scale systems and decentralised control theory aims at developing a theoreti-

cal framework particularly suited for the analysis and control of large systems, and

typically attempts to find or design constituent system dynamics with the property

that, when connected together, the resulting closed-loop system will be stable. In

particular, the implemented control laws should be decentralised, so that there is no

single, centralised entity that regulates the system.

– Networked multi-agent systems, and in particular consensus and cooperation therein:

Attempts are made to develop consensus algorithms or protocols that pose an inter-

action rule specifying the information exchange between agents and usage of com-

municated information to update the agents’ states so that the system reaches an

“agreement” of sorts, and that the system achieves a certain goal “cooperatively”.

5
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Leaving the first research area aside for a moment, the last two fields generally deal

with systems that are not “monolithically” large, but large in the sense that they are

composed of a great number of interconnected, more granular subsystems that have both

some amount of “self-interaction” as well as some interaction with neighbouring subsystems,

but not every other subsystem. Put differently, the graph describing interactions among

subsystems is assumed to be sparsely connected.

Such a setting naturally lends itself to be treated by decomposing the system into its

“parts” rather than investigating everything as a whole. Similarly, with our growing desire

for even larger, even more complex systems, it may not be attractive to use a single large,

central computer to control the system — be it for economic, reliability or pure technical

feasibility reasons. This becomes evident by considering the many, diverse real world

applications such as power networks, communications networks, large chemical plants and

oil refineries, ecological systems, traffic networks, economic and financial systems, or finite

element discretisations, just to name a few.

In the following literature review, by no means encyclopedic in nature, we begin by

discussing switched positive systems as they are particularly relevant to the third chapter

of this thesis. We then approach the area of large-scale systems and decentralised control,

reviewing some of the most common results used to analyse and stabilise large systems.

Finally, we visit the more recent notion of achieving an aggregate behaviour “cooperatively”

as well as the idea of consensus and agreement in dynamical systems. Cooperative control

may be considered as a separate field from the more traditional decentralised control theory

in that it typically deals with even larger, but more homogeneous systems formed by a

network of interconnected, but all in all similar entities.

2.2 Switched Systems and Positive Systems

The class of switched positive systems refers to dynamical systems that have two important

qualities: They are positive, which means their states are only defined for non-negative

values and that they remain in the closed positive orthant throughout time. Additionally,

they are of switched nature, that is their evolution is not governed by a single but several,

different dynamic system formulations between which the system switches over time, and

which represent different, distinct system behaviours.

Both types of systems play a crucial role in many real world applications: For many

physical variables only positive values are meaningful (for instance, masses, liquid con-

centrations, temperatures, volumes, etc.; but also quantities of objects or probabilities),

and while switched behaviour can be observed in a number of natural sciences, it is most

prevalent in man-made applications (for instance, consider robotic systems switching be-

tween different operating modes, transmission boxes in vehicles, networked systems with

changing communication topologies, event-driven systems, etc.).
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In the following, we begin by giving an overview of switched systems. This is followed by

a discussion of positive systems where restriction of the state to the closed positive orthant

allows for much more comprehensive stability results than are available in the general case.

In the last subsection, we finally present a number of results from the relatively young field

of switched positive systems that unites both fields.

2.2.1 Switched systems

It is generally understood that a switched system consists of a number of dynamic sys-

tems called constituent systems, subsystems or modes (representing different “behaviours”)

together with a switching rule or switching signal that orchestrates the switching among

them. Switched systems are thus closely related to and can be seen as a sub-class of hybrid

systems since they constitute a mix of both dynamic elements (the state evolution governed

by differential or difference equations) and discrete time elements (the piecewise constant

switching function).

A great deal of attention has been given to switched systems for a number of reasons.

First, this framework allows a much more natural modelling of many real-world phenom-

ena which exhibit switching between different, distinct behaviours (common in biological

networks for instance, de Jong et al., 2004). Then, it is also of particular use in the context

of intelligent control systems which attempt to improve overall performance by switching

between different, tailor-made controllers that are more appropriate for different (local)

operating regimes, Ge and Sun (2005). Furthermore, switching between even the simplest,

linear systems can produce very complex behaviours including chaos and multiple limit

cycles, Yang and Chen (2008). Another interesting fact is that even if given two pla-

nar, linear, time-invariant systems that are exponentially stable, stability under arbitrary

switching among the two vector fields associated with these LTI systems is not, in general,

guaranteed to be stable. In other words, it may well be possible to construct a switching

sequence that results in an unstable overall behaviour, Liberzon and Morse (1999). To

illustrate this point, an example of a destabilising switching sequence applied to a system

consisting of two (individually exponentially stable) LTI systems is given in Figure 2.1 on

the following page.

While work on the more general problem of differential equations with time varying

parameters has been ongoing since the early 1900s (Perron, 1930; Măızel’, 1954; Sell, 1963;

Conti, 1967; Coppel, 1978), a new body of literature focusing in particular on switched

systems (where system parameters vary abruptly with time) has been growing since the

1990s. For a more in-depth treatment of the wealth of results (the vast majority of which

only applies to linear systems) refer to the books by Liberzon (2003); Murray-Smith and

Shorten (2003); Li et al. (2005); Ge and Sun (2005); Boukas (2006); Mahmoud (2010) or

the survey articles by Liberzon and Morse (1999); Michel (1999); Decarlo et al. (2000);

Hespanha (2004a); Lin and Antsaklis (2009) and in particular Shorten et al. (2007) on
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Figure 2.1: Trajectory resulting from a destabilising switching sequence in a switched
system of two Hurwitz stable second order LTI systems.

which parts of this section are based. Most of the research can typically be attributed to

two fundamental questions: Is a switched system stable under arbitrary switching, or (if

not) is it stable when certain restrictions are placed on the switching signal?

In the following, we shall discuss some of the literature that dealt with these questions.

Stability under arbitrary switching

Since Lyapunov theory plays a key role in the stability analysis of dynamic systems, it

should come as no surprise that most of the results concerning switched systems also

rely on such ideas. It is easy to see that if a Lyapunov function exists for a switched

system under arbitrary switching — which also includes constant “switching” signals —

then this function must be valid for each constituent system in isolation as well. In other

words, such function would have to be a common Lyapunov function for all subsystems.

Indeed, a classic result for linear (continuous-time) switched systems shows that existence

of a common Lyapunov function is equivalent to uniform exponential stability or absolute

stability, see Molchanov and Pyatnitskii (1989); Dayawansa and Martin (1999); Liberzon

and Morse (1999); Fornasini and Valcher (2011) for more details and the precise definition

of these terms. A similar result for discrete time systems can be derived from Brayton and

Tong (1979); Barabanov (1988). In that context, most of the literature appears to focus on

finding common quadratic Lyapunov functions, but other types such as linear or piecewise

quadratic / linear have also received attention.

Converse Lyapunov theorems Loosely speaking, these results guarantee existence of Lya-

punov functions given stability. They have been established for different types of switched

systems, including linear systems (Molchanov and Pyatnitskii, 1989; Blanchini, 1995), non-
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linear systems (Dayawansa and Martin, 1999; Mancilla-Aguilar and García, 2000), uncer-

tain systems (Lin and Antsaklis, 2005a), systems with dwell-time1 (Wirth, 2005b), or

input-to-state stable systems (Mancilla-Aguilar and García, 2001). But while it is useful

to know such correspondence between stability and Lyapunov function existence, finding

tests that guarantee the existence of a common Lyapunov function (and thus stability) is

probably most relevant for practical applications. In the linear case, this basically means:

What conditions must the system matrices of the constituent systems fulfil in order for

the overall system to be stable under arbitrary switching? Such existence questions can be

approached numerically and algebraically.

Numerical tests The advantage of focusing on common quadratic Lyapunov functions is

that their existence problem can be formulated as a set of linear matrix inequalities. If the

resulting system of inequalities is feasible, that is if a solution exists, then the switched sys-

tem will be exponentially stable, Boyd et al. (1994); Ghaoui and Niculescu (2000); Liberzon

and Tempo (2004); Ibrir (2008). A different technique involving periodic switching signals

was derived in Margaliot and Yfoulis (2006). Techniques for the systematic construction

of common piecewise linear Lyapunov functions (which were considered as early as the

1960s in the context of Lur’e systems, Rosenbrock, 1963; Weissenberger, 1969) and com-

mon polyhedral Lyapunov functions have been studied in Brayton and Tong (1979, 1980);

Barabanov (1989); Polański (1995, 1997); Johansson and Rantzer (1998); Polański (2000);

Yfoulis and Shorten (2004); Christophersen and Morari (2007). Unfortunately, all these

approaches only provide sufficient conditions for stability, and even if they can answer the

stability question (provided the original problem is not too large), they usually provide

little insight as to why a system is stable or not.

Algebraic conditions These tend to provide more meaningful answers to the stability

question and shine more light on the dynamical properties of switched systems. However,

the general problem of proving common Lyapunov function existence for linear systems

is yet to be solved. There are nonetheless a number of useful results for specific types of

linear systems (all, of course, under the assumption that each of the constituent systems is

stable). For instance, if the system matrices are symmetric or normal, then the resulting

system will be stable under arbitrary switching, Zhai and Lin (2004); Zhai et al. (2006).

Triangular systems also always have a common (quadratic) Lyapunov function Mori et al.

(1997); Shorten and Narendra (1998). In fact, for such systems, exponential stability of the

constituent systems is equivalent to uniform exponential stability under arbitrary switch-

ing. This is particularly useful since even certain non-triangular systems can be brought

into triangular form: For instance, it is well known that if system matrices commute with

each other, then there exists a unitary matrix which can be used to transform each system

matrix into upper triangular form, Horn and Johnson (1985); Narendra and Balakrishnan

1 As well shall see later, these are systems which cannot switch arbitrarily fast, but have a uniform
upper bound on the switching rate.
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(1994). If the system matrices do not commute, but if the Lie-Algebra generated by them

is solvable, then it is Lie’s theorem (Humphreys, 1972) that guarantees that the system is

simultaneously triangularisable.

Extensions to these ideas have been reported in Shorten and Cairbre (2001a,b, 2002);

Solmaz et al. (2007), attempting to relax the somewhat restricting requirement of simul-

taneous triangularisability to pairwise triangularisability. Further necessary and sufficient

stability results for special classes of systems concern pairs of: planar systems (Shorten

and Narendra, 2000, 2002), third-order systems (King and Shorten, 2004, 2006), and sys-

tems with rank one difference (Shorten and Narendra, 2003; King and Nathanson, 2006).

A necessary and sufficient condition for the robust existence of a common quadratic Lya-

punov function (hence implying exponential stability) with respect to certain types of

perturbations is discussed in Hinrichsen and Pritchard (1989); Shorten et al. (2007) where

the concept of stability radii is used. Sufficient conditions based on Lyapunov operators

were developed in Ooba and Funahashi (1997a,b,c, 1999). Lastly, necessary and sufficient

asymptotic stability conditions for general switched linear systems were reported for the

discrete-time case in Lin and Antsaklis (2005b); Bhaya and das Mota Chagas (1994) and

for the continuous-time case in Bhaya and das Mota Chagas (1994); Lin and Antsaklis

(2009).

While all these results are promising they are generally hard or computationally ex-

pensive to check for systems of larger dimensions and/or with many constituent systems.

Also, not all applications require stability under arbitrary switching, as we shall see next.

Stability under restricted switching

Many real-word system cannot switch instantaneously or have a natural upper bound

on the switching rate (consider gear changes in a car for instance); in other cases the

system may not be able to switch from any one mode to any other mode, but must adhere

to a prescribed switching sequence/order (for example, it would be rather unlikely that

an automatic gearbox would chance directly from fifth to first gear). Given such a priori

knowledge of time domain or state space restrictions on the switching signal, it is possible to

find less conservative stability results. Also, another interesting question concerns whether

it is possible to restrict switching to result in a stable overall behaviour for systems that

contain a number of unstable modes.

Slow switching On an abstract level, it is easy to understand how restrictions on the

switching rate can contribute to stability: Assume a switched system is composed of stable

subsystems with the property that, when a subsystem is activated, it exhibits a short

intermittent increase in energy. Since the subsystems are stable, they would absorb the

initial energy increase quickly. But if one switches “too quickly” between the systems,

this increase may build up quicker than it can be absorbed — with the result that the

switched system would not be stable. If, however, the switching rate was restricted and
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each subsystem is given enough time to absorb the temporary increase, then the switched

system would be stable. Recall Figure 2.1 on page 8 which showed a somewhat “fast”

switching sequence — if the same system is switched just a little bit slower, the solution

will actually converge, see Figure 2.2 below.
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Figure 2.2: Trajectory of the same system and same initial condition as used in Fig-
ure 2.1, but this time using a slower switching sequence.

Such ideas of constraining the switching rate have been studied extensively over the past

decades, initially in the context of systems with slowly varying parameters, see for instance

Desoer (1969); Ilchmann et al. (1987); Guo and Rugh (1995). In the switched systems

literature, the term dwell-time captures this concept, Hespanha (2004b); Hespanha and

Morse (1999); Morse (1996); Zhai et al. (2001). It defines the (uniform) lower bound on

the time intervals between consecutive switching instants. A classical result then confirms

the intuition, Morse (1996): If the dwell-time is sufficiently large, a switched system based

on Hurwitz stable subsystems is asymptotically stable for any switching system respecting

the dwell-time constraint. However, it is also intuitive that, occasionally, the dwell-time

constraint may be violated without compromising stability, provided this does not happen

to frequently. This led to the introduction of the more forgiving average dwell-time concept

(Hespanha and Morse, 1999), for which a similar result exists — but since the required

average dwell-time may be smaller than the fixed one it will allow for a broader class of

switching signals. Similar concepts for the discrete time case exist as well, Zhai et al.

(2002). Unfortunately, it appears that most of the existing results only provide rather

conservative bounds on the dwell-time — tight conditions on the truly required minimum

dwell-time are still a topic of research, Shorten et al. (2007). Converse Lyapunov theorems

for the dwell-time case are reported in Wirth (2005a); De Santis et al. (2004); Pola et al.

(2004).
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Apart from defining a minimum time between switches, it may also be required, in cases,

to introduce an upper bound on the time the system is allowed to stay in a mode. Switching

signals obeying such upper bound then may allow a switched system with unstable modes

to be overall stable — as the system is not allowed to spend too much time in the unstable

mode. Work investigating such situations includes Lin et al. (2003); Zhai et al. (2001,

2002); Yedavalli and Sparks (2001).

State-dependent switching As mentioned earlier, the switching may also be constrained

by rules that depend on the state vector of the system. This can come in two flavours —

either the switching is directly a function of the state value (switching is entirely dictated by

the state vector alone), or it is arbitrary but subject to certain constraints that depend on

the state. The latter (more general) set-up is considered in the next chapter. The former,

more common set-up assumes that the state space is partitioned a priori into closed (but

possibly unbounded) regions or “cells” whose interiors are pairwise disjoint but whose union

covers the entire state space (such regions are usually denoted by Ω in the literature), and

each of these Ω-regions has a particular subsystem associated to it so that the system

automatically switches into that mode whenever its state enters that region. In other

words, it is assumed that there are a number of hyper-surfaces that completely determine

all the system’s mode switches. Such a situation is illustrated in Figure 2.3 below. Since the

switching can no longer be arbitrary it may be unduly restrictive to require the existence

of a common Lyapunov function. In fact, there may not be such a function altogether —

but the system may still be asymptotically stable. A common approach is then to look for

a family of (local) Lyapunov functions — usually one Lyapunov function for each region

— which are then “pieced together” to create an overall function which then provides for

asymptotic stability.

Ω1

(System 1)
Ω2

(System 2)

Ω3

(System 3)

State 1

S
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2

Figure 2.3: Illustration of the positive orthant being divided into three pairwise disjoint
and conic Ω regions. In each of these Ωi-regions, only mode i can be activated.
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This idea was applied in Johansson and Rantzer (1998) to switched affine systems

by adopting a numerical technique called the S-procedure (Aı̆zerman and Gantmakher,

1965; Uhlig, 1979). It allows the systematic construction of piecewise quadratic Lyapunov

functions which, combined, then guarantee stability under the state-depending switching

rule. Further results for different system types using this type of Lyapunov function being

mostly based on Linear Matrix Inequalities have been reported in Pettersson and Lennart-

son (1996, 1997); Hassibi and Boyd (1998); Johansson et al. (1999); Feng (2002); Pettersson

and Lennartson (2002); Lee (2008); Yong et al. (2008). An attempt to generalise the piece-

wise quadratic Lyapunov function approach to more general functions of polynomial form

were given in Prajna and Papachristodoulou (2003); Papachristodoulou and Prajna (2009).

Multiple Lyapunov functions This framework is another way of deriving restrictions on

the switching rate (but in some formulations also the switching sequence) in order to guar-

antee stability. It sits somewhere in the middle between time space and state space based

restrictions. As the name suggests, the rough idea is to use not just one but combine

multiple non-traditional Lyapunov-like functions (usually one for each subsystem) to con-

struct another non-traditional overall Lyapunov function — non-traditional in the sense

that it may have discontinuities and may not be decreasing everywhere. This Lyapunov-

like function then dictates the restrictions on the switching sequence. There are several

versions of this concept, but the simplest is to constrain the switching in such a way as to

guarantee that if the system is to switch into one particular mode i then the associated

Lyapunov-like function must 1) be strictly decreasing at that point and 2) its value must

be less than what it was when the system last left that mode. Ideas initially due to Peleties

and DeCarlo (1991, 1992) motivated a number of useful results in that direction, see for

instance as Branicky (1994, 1998); Ye et al. (1998); Geromel and Colaneri (2006a,b); Zhang

et al. (2009a,b). Unfortunately, as in classical Lyapunov theory, it is not straightforward

to choose the candidate Lyapunov functions, in particular those that would minimise the

resulting times.

Before moving on to switched positive system, it should be noted that a third funda-

mental question relating to constraining the switching may be asked: Namely, whether it

is possible (and if so and how) to construct a stabilising switching sequence when one or

more subsystems are unstable. To limit the scope of this chapter, this shall not be dealt

with here, but the interested reader is referred to the survey papers mentioned earlier (in

particular Lin and Antsaklis, 2009).

2.2.2 Positive Systems

A somewhat different restriction arises when studying so-called positive systems (some-

times, if non-linear, they are also referred to as monotone systems with the assumption

that the origin is stable, Rüffer et al., 2010). As we mentioned earlier, these are systems
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where the states only “make sense” for non-negative values — hence, the dynamics must

be such that the system never leaves the closed positive orthant.

Systems with such constraints on the state space have been the subject of many recent

studies in the control engineering and mathematics literature, see for instance Berman

and Plemmons (1979); Berman et al. (1989); Johnson et al. (1993); Farina and Rinaldi

(2000); Kaczorek (2002); Virnik (2008); Haddad et al. (2010) or the proceedings of the

series international symposia on Positive Systems: Theory and Applications (POSTA’03;

POSTA’06; POSTA’09). The interest in such systems is hardly surprising since they are

encountered in as diverse areas as economics (Johnson, 1974; Meyn, 2008), biology (God-

frey, 1983; Jacquez and Simon, 1993, 2002; Arcak and Sontag, 2006), electronics (Benvenuti

and Farina, 1996), social sciences (Bartholomew et al., 1991; de Kerchove and Van Dooren,

2006), communication networks Zander (1992); Foschini and Miljanic (1993); Shorten et al.

(2006), decentralised control Šiljak (1978), or indeed mathematics (probabilities are pos-

itive quantities) just to name a few. While both nonlinear and linear positive systems

have been studied, much recent attention has focused on both time-varying (in particu-

lar switched) and time-invariant positive linear systems, and on the Metzler matrices that

characterise the properties of such systems. A classical result states that a continuous-time

linear time-invariant (LTI) system starting in the positive orthant will remain positive if

and only if the system matrix is a Metzler matrix (that is, it has non-negative off-diagonal

elements); in the discrete time case, it must be a non-negative matrix, Farina and Rinaldi

(2000). Note that this property is independent of stability. For discussions on reachability

and controllability in positive systems, which are out of the scope of this literature review,

please refer to Caccetta and Rumchev (2000); Fornasini and Valcher (2005); Valcher and

Santesso (2010).

As for general systems, any type of Lyapunov function may of course be used to study

the stability properties of positive systems. For a general LTI system, the existence of a

quadratic Lyapunov function (which is based on general but positive definite matrices) is

necessary and sufficient asymptotic stability. In the case of positive LTI systems, however,

this matrix has a simpler structure: Here the existence of a strictly positive diagonal matrix

is necessary and sufficient for asymptotic stability, Farina and Rinaldi (2000). Furthermore,

thanks to the positivity property of these systems, co-positive Lyapunov functions may also

be employed to study stability — and as noted in Çamlıbel and Schumacher (2004), these

may be less conservative as they take into account that the states only evolve in the positive

orthant. For instance, with linear co-positive Lyapunov functions one searches for a strictly

positive vector, which is even more attractive due to the even simpler structure. In the

LTI case the existence of such a linear function is also equivalent to the system matrix

being Hurwitz, see for instance Mason et al. (2009); Horn and Johnson (1991). Stability

properties of positive non-linear systems were recently studied in Mason and Verwoerd

(2009) and Rüffer et al. (2010); positive descriptor systems were considered in Virnik
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(2008). But while positive linear time-invariant system are now completely understood,

time-varying results appear to be scarce.

2.2.3 Switched positive systems

In this last subsection, we now turn our attention to the combination of both system

types. When studying the stability of a switched system that switches between positive

LTI systems, the types of Lyapunov functions mentioned above (i. e. quadratic and linear

co-positive) would naturally suggest themselves. Clearly, since switched positive systems

are a subclass of switched systems, all results mentioned in the previous section on gen-

eral switched systems hold. However, since they do not take into account the positivity

constraint on the state, attempts have been made to find less conservative stability results

that are tailor suited to this system type. Let us conclude this section by reviewing a

number of recent results first for the continuous time, and then the discrete time case.

Continuous-time switched positive systems

Common quadratic Lyapunov functions Necessary and sufficient conditions for existence

of common quadratic Lyapunov functions for arbitrary switching between two continuous-

time positive 2D systems were discussed in Gurvits et al. (2007). An eigenvalue condition

on the product of the system matrices was derived that is equivalent to uniform asymptotic

stability. Attempts to generalise these results and the general problem of finding necessary

and sufficient conditions for systems with higher dimensions so far only include the 3D

case in Fainshil et al. (2009). Common diagonal Lyapunov functions in particular were

investigated in Mason and Shorten (2004). A very recent publication (Alonso and Rocha,

2010) presented general (but only sufficient) existence conditions for common quadratic

Lyapunov functions in both the continuous- and discrete time case for systems of arbitrary

size (both in terms of dimension and number of subsystems) using multidimensional sys-

tems analysis. Their condition relies on a certain test-matrix (which is constructed based

on the constituent system matrices) being Schur-stable.

Common linear co-positive Lyapunov functions Necessary and sufficient conditions for

existence of common linear co-positive Lyapunov functions were initially studied in Mason

and Shorten (2007). A result was presented for switching between two constituent systems

of arbitrary dimensions involving the convex hull of the system matrices being Hurwitz

stable. This work was later extended in Knorn et al. (2009a) to arbitrarily many systems,

which is the content of the next chapter of this thesis.

Common quadratic co-positive Lyapunov functions Additional equivalent conditions

to the previous result were given in the Fornasini and Valcher (2010), including the fact

that such common linear co-positive Lyapunov function may be used directly to construct
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common quadratic co-positive Lyapunov functions (although they are of rank one). Nec-

essary and sufficient existence conditions were also studied in Bundfuss and Dür (2009)

and formulated amounting to feasibility checks of suitably defined linear inequalities, in an

attempt to answer some of the general problems posed in Çamlıbel and Schumacher (2004).

The work by Gurvits et al. (2007) also includes equivalent conditions for the existence of

such functions for the 2D case with two modes studied.

A different approach involving “most unstable switching laws” was applied to the case

of arbitrary dimensions in Margaliot and Branicky (2009).

Discrete-time switched positive systems

The results for linear co-positive Lyapunov functions find straightforward extensions to the

discrete time case, Fornasini and Valcher (2011). In fact, in said paper it is shown that if a

common linear co-positive Lyapunov function exists, then a common quadratic Lyapunov

function can be found, which in turn implies that a common quadratic co-positive Lyapunov

function must also exist. Switched linear co-positive Lyapunov functions were discussed

in Liu (2009), where existence of such functions can be equivalently formulated as linear

programming problems as well as linear matrix inequality problems.

In some sense, the types of systems encountered so far typically do not involve thousands

of states and are usually of “dense” nature (in the linear case for instance it is never assumed

that the system matrices are sparse). This contrasts with the next class of systems that we

turn our attention to, where the opposite is assumed — “many” states, but overall “sparse”

systems.

2.3 Large-Scale Systems and Decentralised Control

While research in the area of large-scale systems and control therein started in the second

half of the 20th century, they continue to be of interest to this day as shown, for instance,

by the ongoing series of IFAC symposia “Large Scale Systems: Theory and Applications”,

(IFAC TC 5.4, 2010). Although the term “large” is of rather relative nature, we shall

simply assume that it refers to systems that are large enough so that “traditional” analysis

and control techniques start to reach their limits, and where a partitioned interpretation is

of benefit either conceptually or computationally. Many classical approaches pre-suppose

some form of “centrality” — be it centrality of a priori information (system model, pa-

rameters, etc.), centrality of measurements or centrality of actuation. However, as systems

grow larger, complexity also grows rapidly: if not exponentially, it still grows faster than

the system size. This implies that typically sooner rather than later centralised design,

analysis or control approaches cannot be used due to the sheer size of the problem. For

instance, in principle Lyapunov’s Method (Khalil, 1992; Miller and Michel, 2007) can be

applied to large, complex multidimensional systems, but in practice, apart from the fact
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that there is no obvious choice for a suitable Lyapunov function candidate, one would also

quickly encounter computational problems.

Figure 2.4: Visual representation of a “small” protein–protein interaction network based
on data by Uetz et al. (2000). In these networks, proteins form the nodes, and
they are linked together if they interact in some way or other, resulting in an undi-
rected graph. The graph shown here “only” contains about 500 nodes; other publicly
available data sets contain significantly larger networks, but these are difficult to
visualise.

As stated by Sezer and Šiljak (1996), one can usually identify three basic reasons why

it is often necessary to move beyond classic “one-shot” approaches: i) dimensionality, ii)

information structure constraints, iii) uncertainty.

“Decentralising” or decomposing the task at hand (be it modelling, analysis, or indeed

control of a large-scale system), that is breaking the problem down into smaller but inter-

connected sub-problems, oftentimes is not only the only chance at regaining tractability,

but in many cases also allows for much more meaningful insights into the problem, es-

pecially if it is of distributed nature in the first place. Presumably, these sub-problems

could initially be treated independently by analysing their stability properties in isolation,

to then be re-combined again (taking into account the nature of their interconnections)

to give insights into the original, large system. In addition to control theoretic aspects,

questions of interconnection- and communication structure and related stability issues then

become relevant.

An intuitive way of creating large-scale systems is to take a large number of individual

systems and interconnect them. This is “bottom up” approach is typically referred to as

synthesis. Alternatively, at “top down” approach is taken in the decomposition-aggregation



18 CHAPTER 2. LITERATURE REVIEW

procedure. Here, the overall system first needs to be broken down into somewhat “in-

dependent” sub-groups (decomposition) to be then studied in isolation and finally “put

together” again (aggregation) to derive properties for the overall system. Both approaches

are illustrated in Figure 2.5 on the facing page.

The latter procedure is prominent in and probably originated from the economics lit-

erature, see for instance Theil (1954); Green (1964). It has been described by Simon and

Ando (1961) as:2

(i) We can somehow classify all the variables in the economy into a small number
of groups;

(ii) we can study the interactions within the groups as though the interactions
among groups did not exist;

(iii) we can define indices representing groups and study the interaction among
these indices without regard to the interactions within each group

In the context of large-scale systems, this three-step process takes the following form,

see Sandell et al. (1978):

Step 1: The system is supposed to consist of interconnected subsystems. It is as-
sumed that this decomposition or tearing has already been specified, and that
a description of each subsystem and a description of the interconnection is
available.

Step 2: It is assumed that each subsystem, when considered in isolation, is stable [or
has been stabilised]. Furthermore, some quantitative measure of this stabil-
ity (e. g., a lower bound on the rate of decrease of a Lyapunov function) is
available.

Step 3: A condition is now specified in terms of this quantitative measure and some
quantitative measure of the magnitude of the interconnection, and it is shown
that the interconnected system is stable if the condition holds.

Let us first review how this procedure applies to large-scale systems, starting with

decomposition techniques followed by ways of aggregating the stability properties of the

subsystems to derive stability of the overall system. We then discuss how such systems

may be stabilised.

2.3.1 Decomposition

As we mentioned earlier, decomposition of a given large-scale system is in many cases

the only option one has to analyse the system, even with ever more powerful computing

equipment and increasingly sophisticated numerical tools. While work on how to best

decompose complex systems started in the second half of the last century by the seminal

work of Kron (1963) on electrical networks, it is reported in Himmelblau (1973) that as

early as 1830 and 1843 C. F. Gauss and his student C. L. Gerling successfully solved

2 Emphasis added.
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. . .

Synthesis

. . .

Decomposition Aggregation

Figure 2.5: Illustration of the “bottom up” synthesis and the “top down” decomposition-
aggregation approach in the analysis of large-scale systems; the overall large-scale
system is shown on the top, whereas the individual subsystems in isolation are shown
on the bottom.

systems of equations by exploiting diagonal structures. Relevant monographs in the area

include Himmelblau (1973); Sage (1977); Jamshidi (1983); Chen et al. (2004); Antoulas

(2005).

Two basic approaches can be distinguished: Tearing along physical or mathematical

lines. In the former case, the system is broken down according to physical considerations

and the subsystems have a physical coherence usually representing distinct, natural struc-

tures. In the latter case, the system is decomposed by a purely mathematical algorithm

— hence without any consideration for physical meaning — together with, possibly, some

coordinate transformations before and after the decomposition. As the physical decom-

position is strongly application dependent but usually intuitive to perform (given enough

insight into the problem at hand) it shall not be discussed here.

Mathematical decomposition in itself can be of exact or approximative nature. That

is, either they produce equivalent models with identical behaviour, or reduced models

(via model-reduction) that are a simplification of the original system, thus introducing

approximation errors. In the exact case, the objective is to yield subsystems that are as

independent as possible, as then the remaining, hopefully small interactions among sub-

systems can be regarded as perturbations to otherwise isolated systems — which facilitates

their study significantly. In the approximative case, however, one aims to significantly re-

duce the size of the system (that is, approximate the overall system with a low-dimensional

one) while preserving key properties such as stability, passivity or steady-state response,

so that then traditional analysis methods can be applied.
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Exact decomposition

While the influential work by Kron (1963) investigated decomposition along physical lines,

it was Steward (1962, 1965) that first introduced information flow-based algorithms for

identifying sparsity in large systems of equations in order to produce weakly coupled sub-

systems. Further partitioning / tearing methods were developed in Sargent and Westerberg

(1964); Ledet and Himmelblau (1970); Young (1971); Himmelblau (1973). Unfortunately,

most decomposition techniques have been developed for systems of algebraic equations

only; it appears that the systematic decomposition of dynamic equations is still unre-

solved. Therefore, decomposition is usually performed based on the physical or structural

characteristics of the system.

Model reduction

Classical model reduction techniques for dynamic systems (typically in state-space for-

mulation, both continuous- or discrete-time) are numerous, and basically fall into three

categories:

(i) Singular value decomposition (SVD) based methods

(ii) Krylov (or moment matching) based methods

(iii) Iterative methods that combine aspects of both.

As only exact analysis methods are considered in this thesis, we shall not describe these

techniques in detail. The interested reader is invited to refer to the excellent tutorial papers

by Antoulas et al. (1999); Antoulas and Sorensen (2001) and the numerous references

therein.

Nonetheless, model reduction techniques can significantly reduce the size of a system

to a point where traditional analysis techniques become feasible again. However, in the

case of exact decomposition of the system, or where the model is already available in

decomposed form, stability of the overall system cannot be readily determined unless the

stability properties of the subsystems are aggregated by observing original interconnection

structure. This will be discussed in the following subsection.

2.3.2 Aggregation

A natural question to ask is whether stability of an interconnected system can be readily

deduced or derived from stability properties of its individual subsystems. To answer this

question, it is natural to attempt to somehow “aggregate” the stability properties of the

individual systems to determine overall stability. General references discussing the key

results in this area include Šiljak (1978); Michel and Miller (1977); Vidyasagar (1981);

Michel (1983); Grujić et al. (1987); Lakshmikantham et al. (1991). It appears that work in
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this area has followed two strands: To derive stability with Lyapunov methods, and with

input-output methods.

For both approaches, two different assumptions are imaginable, see Šiljak (1978): Either

the constituent systems are assumed to be stable in isolation, or they cannot function

properly (are unstable) when on their own. This leads to the somewhat philosophical

question whether the increase in complexity by interconnecting the systems will lead to an

improvement in stability and reliability of the aggregate system, or not. Intuitively, in the

second case where the systems are not self-sufficient, interconnection may lead to certain

cooperative effects that could potentially produce overall stability — contrary to the first

case where interconnection may actually produce an unstable system, say for instance due

to unstable feedback loops being introduced by certain connections.

A key property of large-scale systems is uncertainty in the interconnection structure.

Whether this is due to inexact models or time-changing interconnections from structural

perturbations, subsystems generally may connect or disconnect from each other during

operation, and this behaviour needs to be included in any stability analysis of such systems.

To take this into consideration, the concept of connective stability was introduced in Šiljak

(1972): A system is connectively stable if and only if it remains stable (in the sense of

Lyapunov) for all possible interconnection topologies, in other words under any structural

perturbation. Since this includes in particular the case where all subsystems are completely

isolated from each other, one generally assumes that all subsystems are stable on their own,

Sandell et al. (1978).3

Lyapunov methods

Indeed, the initial work by Bailey (1965) and the flood of subsequent papers followed this

path by assuming that a Lyapunov function exists for each subsystem in isolation.4 Then,

the individual Lyapunov functions can either be cast into another scalar Lyapunov function

for the aggregate system by forming a weighted sum of the original functions, or they can

be combined into what is called a Vector Lyapunov function (Bellman, 1962; Matrosov,

1972, 1973). In both cases, the interconnection structure plays an important role: In order

to derive stability, certain constraints must be placed on the nature and magnitude of the

interactions between the free subsystems.

In the context of large-scale systems, vector Lyapunov functions were first used in

the seminal work by Bailey (1965). Subsequent results — both for linear and non-linear

systems — were obtained by Piontkovskii and Rutkovskaya (1967); Matrosov (1972, 1973);

3 Exceptions to this assumption however are commented on in the section dedicated to Input-Output
based methods, see below.

4 Roughly speaking, a Lyapunov function is a norm-like, positive-definite function that decreases along
all system trajectories — if one such function can be found, then the system can be shown to be stable,
Lyapunov and Fuller (1992). The advantage of using such functions in general is that knowledge of actual
solutions of the dynamic system are not required for the stability analysis, and they do not assume linearity
of the original system.
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Grujić and Šiljak (1973); Šiljak (1983); Lunze (1989); Nersesov and Haddad (2006), most

of which rely on the comparison principle (Müller, 1926; Lakshmikantham and Leela, 1969;

Miller and Michel, 2007) to ultimately show stability of the original problem. References

for the scalar Lyapunov function approach include Thompson (1970); Araki et al. (1971);

Araki and Kondo (1972); Michel and Porter (1972); Michel et al. (1982); Liu and Lewis

(1992), and some argue that this approach leads to less conservative stability results than

in the vector case. In fact, it can be shown that many applications of the vector Lyapunov

function approach can be reduced to the scalar approach, Michel (1977).

As mentioned earlier, the nature of the interconnections between the subsystems play

an important role. Both procedures require the construction of certain test-matrices, and

in many cases the required interconnection properties will cause those test-matrices to be

M -matrices (which will be discussed in detail in the next chapter). The special properties

of this class of matrices plays a key role in the technical proofs of the relevant results;

additionally, they elegantly allow to show connective stability, Šiljak (1972).

Generalisations Both methods were generalised in a number of ways, Michel and Miller

(1977). To name a few, matrix Lyapunov functions were used in Drici (1994); Martyntıuk

(1998, 2002) to further extend the above techniques to systems with overlapping decompo-

sitions (that is systems, where states may be “shared” among subsystems) as well as to find

more efficient and less conservative stability tests. For decomposition techniques based on

graph theoretic considerations, which can be of great advantage if the connected system is

composed of multiple strongly connected components, refer to Michel et al. (1978); Tang

et al. (1980). Discrete time versions of the above results were presented in Araki et al.

(1971); Grujić and Šiljak (1973); Araki (1975); Martyntıuk et al. (1996). Modifications

of both Lyapunov approaches required for dealing with infinite dimensional systems were

considered in Matrosov (1973); Rasmussen and Michel (1976b); Michel and Miller (1978).

This allowed to apply these results to systems with delay (Anderson, 1979; Mori et al.,

1981; Chang, 1985; Xu, 1995), functional and partial differential equations (Ohta, 1981),

Volterra integro-differential equations (Wang et al., 1992) or hybrid systems (Michel and

Miller, 1977). Stochastic systems were considered in Michel (1975a); Ladde and Šiljak

(1975); Michel (1975b); Rasmussen and Michel (1976a); Socha (1986) and discontinuous

systems in Michel and Porter (1971); Ruan (1991); Stipanović and Šiljak (2001).

While one can safely say that the stability theory for large-scale systems based on

Lyapunov methods has reached a relatively mature level, Michel (1983), it has one major

drawback: Lyapunov stability only applies to the equilibria of unforced systems.

Input-Output based methods

While this restriction on the system structure is not only removed by input-output based

methods, they also typically give even less conservative results, are more easy to apply in

practise as crucial test parameters (the gains) are more readily related to actual design
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parameters in the overall system, and the equilibrium of the interconnected system does

not need to be know a priori, Sandell et al. (1978). Input-output stability ignores the

internal system description and only focuses on the stability of how the system’s inputs

are mapped to its outputs. In other words, it considers a system to be stable if its outputs

will be bounded for every input signal that is also bounded (in some sense), that is, loosely

speaking, the system cannot be destabilised by the input.5

Literature in this area can again be classified into two main categories, namely deriving

methods involving finite gains, and methods using notions of dissipativity / passivity. Both

approaches of input-output stability (Sandberg, 1964; Zames, 1966; Desoer and Vidyasagar,

2009) have then been applied to arbitrary interconnections of a large number of multi-input

multi-output (MIMO) feedback systems. While such interconnections could be viewed as

one large MIMO-system in itself, as before, it is often preferable to take advantage of its

decomposed form.

Finite gains Initial results that fall in the first category were given by Tokumaru et al.

(1973); Porter and Michel (1974); Cook (1974); Araki (1976); Lasley and Michel (1976).

They followed the typical steps of first assuming that the MIMO subsystems are given in a

particular (but very general) standard formulation (often referred to as input-output feed-

back system), then requiring the operators used in these formulations to have small gains

and the non-linear elements in it to be sector bounded, and finally showing stability of the

overall system by placing further conditions on the gains of the operators that reflect the

interconnection structure. Using such general operator based input-output descriptions

allows the theory to also cover non-linear, time-varying systems both in continuous- and

discrete-time, Callier et al. (1978). The gain condition on the subsystems is required for

their input-output stability (via the small gain theorem, Zames, 1966). The interconnec-

tion gains are usually used to construct a test matrix whose leading principal minors are

required to be all positive. Somewhat similar to the Lyapunov-based approach discussed

in the previous section, M -matrices again play a key role as they fulfil this property, Lasley

and Michel (1976); Moylan (1977); Araki (1978), and also elegantly provide for connective

stability. Placing more restrictions on the isolated subsystems and their interconnection

structure, a number of additional results are possible such as obtaining circle criterion

based (Araki, 1978) or Popov-type (Lasley and Michel, 1976) stability conditions, or using

results from positive operator theory, Sundareshan and Vidyasagar (1977). Graph theo-

retic decomposition techniques were developed by in Callier et al. (1976, 1978) to derive

simpler stability tests; this work also helped Vidyasagar (1980) to derive conditions for

the well-posedness of large-scale interconnected systems. Input-output stability results for

interconnections of stochastic systems were studied in Gutmann and Michel (1979a,b).

5 The general input-output approach for linear systems has also received some criticism however as
the truncation operator required in most proofs introduces a non-linearity and unwanted harmonics in the
frequency domain that make the approach only applicable to certain types of systems, namely small gain
and dissipative systems.
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Dissipativity Another way of approaching input-output stability can be found for inter-

connections of dissipative or passive systems, Willems (1972); Hill and Moylan (1976);

Moylan and Hill (1978); Hill and Moylan (1980). Roughly speaking, the concept of dissi-

pativity is a natural generalisation of Lyapunov theory to open systems (that is systems

with inputs and outputs). In the context of dynamical systems it refers to systems that

cannot produce energy on their own and cannot store all the energy that is given to them,

in other words they “absorb” supplied energy in some way.6 The study of such systems

often involves construction of an internal function called the storage function. For stabil-

ity analysis, this function can be seen as (or used to derive) a Lyapunov function for the

system; in thermodynamics, it can be related to the internal energy and entropy of the

system. A classical result (Willems, 1972, 73) shows that any neutral interconnection of

dissipative systems forms itself a dissipative system (which is thus input-output stable as

well); by “neutral” it is meant that the interconnections must be lossless, i. e. not introduce

additional supply or dissipation. This was extended to more general interconnections in

Vidyasagar (1977); Moylan and Hill (1978); Sandberg (1978); Vidyasagar (1979) where

conditions are presented that require certain test matrices reflecting the interconnection

structure to be positive definite. Extensions to discrete-time systems can be found in

Haddad et al. (2004).

Before moving on to the area of decentralised control we note that attempts have been

made to compare and draw parallels between the Lyapunov and input-output stability

based approaches, Araki (1978); Moylan and Hill (1978).

2.3.3 Basic concepts of Decentralised Control

Closely related to the stability analysis of large-scale system is the area of decentralised

control. Its concepts are somewhat complementary to large-scale systems analysis and, over

the last four decades, it has been concerned with developing control techniques that are

particularly suited for these types of systems. The decomposition and analysis techniques

presented earlier also give answers to the fundamental question of how to break down a

given large-scale control problem into manageable and only weakly coupled sub-problems,

which can then be solved in isolation with relative ease. The implementation of such

solutions will be greatly simplified if only locally available information (system states and

outputs) are used, and the reduced communication overhead will certainly have reliability

and economic benefits as well. Furthermore, delays in the information availability and

exchange generally have a detrimental effect on control systems. Thus, if the control

stations only use local information that is presumably more readily and quickly available,

then this approach poses another advantage over centralised solutions.

6 A simple example would be passive components in electrical circuits, such as resistors or capacitors;
a transistor in turn is not dissipative as it is an “active” component.
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There is a large number of excellent books and survey papers covering this vast topic

(including both theory and applications). To name a few, the monographs by Šiljak (1978);

Jamshidi (1983); Tamura and Yoshikawa (1990); Šiljak (1991); Lunze (1992); Zečević and

Šiljak (2010); Davison and Aghdam (2011) cover the topic more broadly whereas the review

papers by Sezer and Šiljak (1996); Sandell et al. (1978); Ikeda (1989); Chae and Bien (1991);

Šiljak (1996); Šiljak and Zečević (1999); Jiang (2004); Šiljak and Zečević (2005); Bakule

(2008); Perutka (2010) are also good starting points to explore the field.

In the following, we briefly give an overview of the typical methodologies encountered,

the necessary presumptions to guarantee feasibility of the control problem, and some of

the most common design approaches for both weakly and strongly coupled systems.

Methodologies

When attempting to design suitable controllers given the complexity of large-scale systems,

three basic methodologies can be identified: i) decentralisation, ii) decomposition, iii)

robustness and model simplification, Bakule (2008).

The first one, decentralisation, concerns the structure of the information to be used

in the control system. As stated above, the objective is to only use locally available

information in each subsystem, leading to a more or less independent implementation of

the control stations. Šiljak (1991) and Lunze (1992) suggest two different scenarios —

decentralised controller design for strongly or weakly coupled subsystems. In the fist case

there is a strong interdependence between subsystems, hence the controller design for each

subsystem must take into account at least an approximate model of the neighbouring

subsystems, whereas such coupling effects can be neglected in the second case. Clearly,

due to the increased complexity of the resulting closed loop system in the first case, weakly

coupled systems are preferable for controller design.

The decomposition methodology, which was already extensively discussed in the previ-

ous section, serves as a tool to analyse and synthesise large-scale systems, with the main

goal of reducing the computational complexity of the task. Robustness analysis and model

simplification attempt to exploit the nature of the uncertainties or the model in order to

further reduce the complexity of the control design task.

Reachability and decentrally stabilisable systems

As in classic control theory, controllability and reachability requirements need to be satisfied

for any feedback controller design to succeed. By its very nature, the idea of feedback

control consists of regulating a system by some from of action applied to its inputs, where

this action depends on and is a response to the system’s behaviour as reflected by its

outputs. Clearly, in order for the control action to be successful, it must be able to influence

or “reach” the system’s states, and the system’s states need to be sufficiently “represented”

(or at least “observable”) in its outputs for the controller to react appropriately. These two
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fundamental concepts are defined as input- and output reachability (Šiljak, 1978). Inspired

by the work of Lin (1974) on structural controllability, analysis of such system properties is

formalised by graph-theoretic concepts. To apply this powerful machinery, the state-space

model of the system is described as a directed graph (whose vertices are the states, inputs

and outputs, and whose arcs represent interactions among them). Structural conditions

guaranteeing that systems can indeed be stabilised by a decentralised control action include

the so-called matching conditions and non-matching conditions (Ikeda, 1989; Leitmann,

1993; Šiljak, 1991).

Weakly coupled systems

Loosely speaking, systems where the interaction between different subsystems are only

“weak” are referred to as weakly coupled systems. In such systems the control design

can be performed independently and based on the individual subsystem models only. This

allows the wealth of classical control techniques to be employed to achieve suitable stability

properties (to name a few, such techniques include for instance pole placement by state

feedback, root-locus or parameter plane methods, Šiljak, 1978; Lunze, 1992; Chen et al.,

2004; Lunze, 2008). After stabilisation of the isolated systems, an aggregate model of the

system is built do derive stability of the interconnected system, taking into account the

nature and magnitude of the interactions.

Unfortunately, the more basic control design techniques tend to lead to high-gain feed-

back solutions which may be prohibitive in practical applications — or even infeasible if

the strength of the interconnections is not known a priori. This led to shift of attention

towards adaptive control solutions where the gains are automatically adjusted as needed

for overall stability. An extensive overview of these methods in the context of large-scale

systems is given in Šiljak (1996); Perutka (2010).

Nonetheless, weak coupling between subsystems is a desirable property, and the next

section discusses a number of techniques from the decentralised control literature that allow

decomposition of a given system into weakly coupled systems.

Decomposition techniques for decentralised control

The “decomposition principle” stands for a loose collection of methods surrounding the

common goal of breaking down a given large-scale system into a set of lower dimensional

subsystems that are weakly coupled. As we mentioned earlier, such decomposition is often

done based on physical or structural characteristics of the system, provided of course that

the subsystems are sufficiently disjoint in nature. But while tearing along the boundaries

of physical subsystems may yield useful insights into the overall system behaviour and

interplay of its components, it may not necessarily lead to the most efficient decomposition.

Since universal decomposition techniques do not depend on particular a priori engineering
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knowledge about the system, they can usually be applied to larger classes of problems and

additionally lead to computationally more efficient results.

A common decomposition technique, the nested ǫ-decompositions (Sezer and Šiljak,

1986, 1991; Zečević and Šiljak, 1994; Amano et al., 1996), consists in its basic form of

graph-theoretic algorithm that clusters system states together through symmetric row and

column permutations of the matrices of the state-space representation. It yields a weakly

coupled collection of subsystems where the strength of the coupling (which impacts the

size and number of the subsystems) can be adjusted by varying the ǫ parameter. This basic

approach was extended in many directions to cope with time-delays in the interconnections,

nonlinear and uncertain interactions, stochastic systems or descriptor systems, to name a

few. An extensive list of references for these extensions can be found in Bakule (2008).

Further composition algorithms like the Lower Block Triangular (LBT) compositions

(Sezer and Šiljak, 1996) or input and/or output reachable acyclic decompositions (Šiljak,

1991) yield hierarchical interconnection patterns between the subsystems. These structures

offer significant computational advantages when standard feedback controller design or

observer design techniques are used.

Another class of decomposition techniques are the so-called overlapping decompositions

(Šiljak, 1991, 1996). When systems are strongly coupled and overlap, they share com-

mon parts and inputs, which means that control needs to conform with these information

structure constraints. This also means that the overall system will have no effective ǫ-

decompositions in its original form. To deal with these situations, one often-used approach

consists of expanding the original problem (with its strongly coupled subsystems) into a

higher dimensional system where the subsystems then appear weakly coupled and permit a

suitable ǫ-decomposition — an overlapping ǫ-decomposition. A general framework for this

concept and surrounding ideas is given by the inclusion principle, see Ikeda et al. (1981);

Bakule (1985); Šiljak (1991); Chu and Šiljak (2005).

K = ,

K11 0 0

0 K22 0

0 0 K33

(a) Block-diagnoal structure

K = ,

K11 K12 0 0

0 K22 K23 0

0 0 K33

(b) Overlapping structure

K =

K11 0 K13

0 K22 K23

K31 K32 K33

(c) BBD structure

Figure 2.6: Different matrix structures after decomposition, c. f. Šiljak and Zečević
(2005).

A related class of decompositions for strongly coupled systems are BBD decomposi-

tions (Šiljak, 1996; Bakule, 2008; Zečević and Šiljak, 2005b, 2010). Whereas in disjoint

systems the feedback gain matrices (relating the system outputs to the inputs) can be

transformed into block-diagonal (BD) forms, this is not possible in overlapping systems,
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and only block tri-diagonal (BTD) or bordered block-diagonal (BBD) forms can be achieved

(see Figure 2.6 on the previous page for an illustration of these structures). Nonetheless,

these formulation have still the advantage that they allow controllers gains particularly in

very large and sparse systems to be computed in an efficient way, in particular allowing

those computations to be performed on massively parallelised architectures with minimal

inter-processor communication overheads.

Many of the existing techniques for overlapping systems, see Šiljak and Zečević (2005);

Bakule (2008) for a comprehensive overview, involve linear matrix inequalities (Boyd et al.,

1994) for which efficient solvers exist, Šiljak and Stipanović (2000); Šiljak and Zečević

(2005); Zečević and Šiljak (2005a); Swarnakar et al. (2007).

These remarks conclude this section on large-scale systems and decentralised control.

The idea of cooperatively controlling a large system’s behaviour is closely related to the

area of decentralised control, but has been treated somewhat separately in the literature.

Decentralised control is typically concerned with an overall system that is to exhibit a

certain behaviour, and to achieve this, a global control goal is decentralised. In cooperative

control, a somewhat different angle of attack appears to be taken, presenting more of a

bottom-up approach: A large number of individual, largely similar and mostly autonomous

entities is joined up to form an aggregate, networked system that is then to exhibit a certain

behaviour.

2.4 Cooperation and consensus

As mentioned above, consensus and cooperation in networked multi-agent systems has

recently attracted much attention in the research community. For a great introduction

into the field and examples of its many, diverse applications see for instance the surveys by

Ren et al. (2005), Olfati-Saber et al. (2007) and Murray (2007), as well as the collection

of references at Reynolds (2001).

2.4.1 History

Consensus and agreement problems were studied systematically as early as the 1960 in the

context of management science and statistics, Eisenberg and Gale (1959); Norvig (1967);

Winkler (1968); DeGroot (1974). Later, those ideas were picked up in different contexts,

such as fusion of sensor data (Luo and Kay 1989; Benediktsson and Swain 1992; Estrin et al.

2001; Olfati-Saber and Shamma 2005; or see the proceedings of the IEEE conferences on

Multisensor Fusion and Integration for Intelligent Systems), medicine (Weller and Mann,

1997), decentralised estimation (Levy et al., 1983; Mutambara, 1998; Gupta, 2006; Olfati-

Saber, 2007), clock synchronisation (Schenato and Gamba, 2007; Carli et al., 2008), or

simulation of flocking behaviour (Reynolds, 1987; Vicsek et al., 1995; see also Figure 2.7

on the facing page for an example) just to name a few.
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Figure 2.7: Illustration of a flock of birds where, in grossly simplified terms, each bird
adjust its speed and heading relative that of nearby flockmates, which leads to the
coordinated group behaviour often observed in nature (such as in bird flocks, fish
schools, herds, etc.)

2.4.2 Networked dynamic systems

Particularly in the last decade the general problem of consensus finding in networked

dynamic systems has been focused on intensely. It typically comes in many “flavours” de-

pending on the application. These variations include whether the topology of the graph

representing the inter-agent communications remains fixed or changes over time; it is undi-

rected or directed; the agents can manipulate the state on which to reach consensus in-

stantly or only with certain dynamics; if each node’s state is scalar or multidimensional;

whether there are delays in the information exchange; or if all nodes update their states

in a synchronous fashion or on their own pace. While the initial work by Borkar and

Varaiya (1982); Tsitsiklis (1984); Tsitsiklis et al. (1986); Reynolds (1987); Vicsek et al.

(1995) on consensus and coordination was based on bi-directional information exchange

between neighbouring nodes (leading to undirected communication graphs) with rigorous

convergence proofs given in Jadbabaie et al. (2003), this has been extended to include di-

rected communication graphs for instance in Beard and Stepanyan (2003); Olfati-Saber and

Murray (2004); Moreau (2005); Ren and Beard (2005); Fang et al. (2005). Another gen-

eralisation allowed asynchronous consensus protocols so that not all nodes had to perform

state updates at the same instant, Olfati-Saber and Murray (2004); Hatano and Mesbahi

(2005); Blondel et al. (2005); Fang et al. (2005); Cao et al. (2006). Closely related was the

work that also considered changing graph topologies, Jadbabaie et al. (2003); Tanner et al.

(2003b); Beard and Stepanyan (2003); Ren and Beard (2005); Olfati-Saber (2006). Further

generalisations of the problem allowed the inclusion of agent dynamics (typically linear,

second order systems) in the consensus problem, Tanner et al. (2003a,b); Olfati-Saber and

Murray (2003); Olfati-Saber (2006), which play an important role in networks of mobile

agents that move with finite dynamics. In some situations the consensus variable may not

be directly altered by the nodes, but only implicitly. Such a situation is dealt with in

Stanojević and Shorten (2008, 2009b).
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However, most of these papers only focus on so-called unconstrained consensus appli-

cations. When the consensus, that the system is to reach, should fulfil external conditions

(such as a common heading of a flock of agents, but in a particular direction), three ap-

proaches are usually taken, see Beard et al. (2001); Lawton et al. (2003); Ren and Beard

(2004) and citations therein: leader-following (Wang, 1991; Mesbahi and Hadaegh, 1999;

Singh et al., 2000; Fax and Murray, 2004; Ji et al., 2006), virtual structure based (Lewis

and Tan, 1997; Beard et al., 2000; Shi et al., 2006) or behaviour based (Balch and Arkin,

1998; Anderson and Robbins, 1998; Lawton et al., 2003; Parker, 1998; Chen and Luh, 1994;

Veloso et al., 2000) approaches.

Leader-following

The first concept presents a common technique used typically to make formations of au-

tonomous mobile agents follow desired trajectories. The idea is that all agents in the are

programmed to follow a designated “leader” node, as sketched in Figure 2.8 below. How-

ever, the problem with these architectures is usually that they not only depend heavily

on the leader, but it appears that little discussion of the case where the leader adjusts its

state based on feedback of the totality of the states of the network has taken place, and

most of the systems dealt with in that context are linear.

Leader

Regular agent

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 2.8: Illustration of three steps of a typical leader following based control algorithm.
With the system in a given position (step 1), the leader moves somewhere (step 2)
in response to which the other agents move to follow him (step 3).

Virtual structures

In the virtual structure approach, the entire network of agents is treated as a single entity,

the virtual structure. The desired behaviour is then assigned to the virtual structure

relative to which each member controls its own behaviour. This approach is illustrated

in Figure 2.9 on the facing page.
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Virtual structure

Agent

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 2.9: Illustration of three steps of a typical virtual structure based control algo-
rithm. With the system in a given position (step 1), the virtual structure is moved
(step 2) in response to which all agents move to follow their assigned positions rel-
ative to the virtual structure (step 3).

Behaviour based

In the behavioural approach, each agent’s behaviour is based on a combination (e. g.

weighted sum) of a number of desired behaviours, such as goal seeking, formation keeping,

obstacle and collision avoidance, etc. An example for this is shown in Figure 2.10 below.

A typical application of these techniques are rendez-vous problems with obstacle and col-

lision avoidance, where the agents are to meet in a certain place, but avoid running into

obstacles or crashing into each other during the approach.

Agent B

Obstacle Target

A

Other agent

C

Figure 2.10: Illustration of the behaviour based approach, where the agent’s final action
is a combination of three desirable behaviours: Goal seeking (A), obstacle avoidance
(B) and collision avoidance with other agents (C).

It is in this third class that our work later in Chapters 4 and 5 could be placed, as

the desired behaviour of the agents in our networks is both a combination of localised and

global constraints.

With these remarks we close this literature review section an move on to present our

first sets of results for switched positive systems.





C H A P T E R 3

Switching

This chapter develops necessary and sufficient conditions for the existence of
common linear co-positive Lyapunov functions first for the state-dependent and
then the arbitrary switching case for sets of positive LTI systems, both in
continuous-time and discrete-time. Additionally, numeric methods for checking
these conditions are provided, we discuss what can be done if the conditions are
violated, and also provide a few preliminary examples for our results.

Chapter contents

3.1 Introduction

3.2 Preliminaries

3.3 State-dependent switching case

3.4 Arbitrary switching case

3.5 Discrete-time switched positive systems

3.6 Examples of usage

3.7 Conclusion

3.1 Introduction

The focus of this chapter will be on switched positive linear time-invariant (LTI) sys-

tems, and in particular on the existence of common linear co-positive Lyapunov functions

(CLCLF). It presents joint work with Dr. O. Mason and Prof. R. Shorten and has been

published in Knorn et al. (2009a,b).1

In some sense, such systems may be interpreted as a (possibly dense) interconnection of

scalar systems, where the graph describing the system interactions changes abruptly over

time. Now, recall the well known result that the existence of a linear co-positive Lyapunov

function is both necessary and sufficient for the exponential stability of a positive linear

time-invariant (LTI) system, Farina and Rinaldi (2000). In light of our earlier remarks

concerning common Lyapunov functions in general it may appear overly conservative to

1 It should also be noted that Theorem 3.2 may be deduced from the independent, more general results
on P-matrix sets given in Song et al. (1999), of which the author was unaware of when the result was
developed.

33
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study the existence of such Lyapunov functions for switched systems. However, establishing

conditions under which such functions exist is nonetheless a natural place to begin the study

of stability of switched positive linear systems.

For one, common Lyapunov functions are very useful since existence of such functions

implies exponential stability of the overall switched system, Fornasini and Valcher (2011).

Additionally, many of the interesting properties of positive systems can be attributed to

the existence of linear co-positive Lyapunov functions. Of particular interest is the work

by Haddad and Chellaboina (2004), in which the existence of such a function was related

to delay independent stability properties that are possessed by many positive systems.

Exploiting these properties further, we will later demonstrate the use of one of the main

results in the applications chapter (Section 6.1 on page 117).

Contributions

Inspired by this and related work, the main contributions of this present chapter will be

the derivation of tractable conditions for the existence of a common linear co-positive

Lyapunov function for a finite number of LTI systems that are associated either with the

entire positive orthant (arbitrary switching) or with polyhedral regions partitioning the

positive orthant (state-dependent switching). In both cases, compact and easily verifiable

conditions are obtained. We also show that our results directly carry over to the discrete-

time case.

Structure

The rest of this chapter is structured as follows: The next section sets up the notation

and defines linear co-positive Lyapunov functions. We then present our main results both

for the case of state-dependent switching (Section 3.3), and for arbitrary switching (Sec-

tion 3.4). Next, we shall discuss how these results can easily be applied to discrete-time

systems. Finally, before making some concluding statements, Section 3.6 highlights the

significance of our results and gives a number of examples that motivate their use.

3.2 Preliminaries

3.2.1 Notation

For general notational conventions, please take note of the Notation section on page 153.

We say that matrices or vectors are positive (non-negative) if all their entries are positive

(non-negative); this is written as A ≻ 0 resp. A � 0, where 0 is the zero-matrix of

appropriate dimension. A matrix A is said to be Hurwitz stable (or just “Hurwitz”) if all

its eigenvalues lie in the open left half of the complex plane. A matrix is said to be Metzler
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(in the literature also referred to as essentially non-negative) if all its off-diagonal entries

are non-negative (Metzler, 1945).

Also, let C ⊆ R
n be a closed, pointed, solid convex cone (or proper convex cone) if and

only if its interior is not empty and αx+ βy ∈ C for any x,y ∈ C and non-negative scalars

α, β. Such cone is called polyhedral if and only if it can be written as the intersection

of finitely many closed half spaces, each containing the origin on its boundary, Berman

and Plemmons (1979). In other words, it has finitely many extremal rays (or generators).

Figure 3.1 below gives an illustration of a polyhedral proper convex cone in R
3
≥0 with three

extremal rays.

b

Figure 3.1: Illustration of a polyhedral proper convex cone in with three generators.

3.2.2 Definitions

A dynamic system is called positive2 if and only if, for any non-negative initial condition, all

its states remain in the closed positive orthant throughout time (irrespective of the system

being stable or not). A classic result for LTI systems shows that a necessary and sufficient

condition for this to hold true is that the system matrix A is a Metzler matrix: In that

case (and only that case) eAt, which characterises the solution of the differential equation,

is non-negative for all t ≥ 0 (Luenberger, 1979), implying that all solutions starting from

non-negative initial conditions remain non-negative.

We now define the class of switched positive linear systems considered in the following.

Definition 3.1 (Switched positive linear system, continuous time)

A switched positive linear time-invariant system with N modes and of dimension n is

a dynamical system of the form

ẋ(t) = As(x(t),t)x(t) with x(t = 0) = x0 � 0 (3.1)

2 Technically, one may also use the word “non-negative”, which would be more accurate, but the term
“positive” is typically used.
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where s : Rn ×R → {1, . . . , N} is some piecewise constant switching signal (or switching

function or switching sequence) which may or may not depend on the state vector x(t),

and where A1, . . . ,AN ∈ R
n×n are the system matrices of the constituent systems (or

subsystems or modes).

Furthermore, we will always assume that all the Ai matrices are Metzler matrices (in

order to ensure positivity of the system) and Hurwitz matrices (in order to ensure stability

of each individual mode).

Finally, we define the following type of Lyapunov function:

Definition 3.2 (Linear co-positive Lyapunov function)

The function v(x) = vTx is said to be a linear co-positive Lyapunov function (LCLF)

for the positive LTI system ẋ = Ax if and only if v(x) > 0 and v̇(x) < 0 for all x ≻ 0,

or, equivalently, v ≻ 0 and vTA ≺ 0.

For more background on Lyapunov theory and related concepts, especially in the con-

text of switched systems, please refer to the references presented in the literature review

on page 8.

3.3 State-dependent switching case

We first consider necessary and sufficient conditions for the existence of common linear

co-positive Lyapunov functions (CLCLF) for sets of positive LTI systems where each con-

stituent system is associated with a closed convex region of the closed positive orthant.

3.3.1 Main result

Consider the following partition of the state-space: Assume that there exist N — possibly

overlapping — proper convex cones Ci ⊆ R
n
≥0 such that the closed positive orthant R

n
≥0

can be written as R
n
≥0 = ∪Ni=1Ci. Moreover, assume that there are N stable positive LTI

subsystems ẋ = Aix such that the ith mode can only be active when the state vector is

in the cone Ci.
Our first main result gives a necessary and sufficient condition for the existence of a

CLCLF for this type of switched positive linear system with state-dependent switching.

Formally, we provide a condition for the existence of a vector v ≻ 0 such that vTAixi < 0

for all non-zero xi ∈ Ci for i = 1, . . . , N .

Theorem 3.1 (Existence CLCLF, state-dependent switching)

Given N Metzler and Hurwitz matrices A1, . . . ,AN ∈ R
n×n and N proper convex

cones C1, . . . , CN ⊆ R
n
≥0 such that Rn

≥0 = ∪Ni=1Ci, precisely one of the following two state-

ments is true:
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(i) There is a positive vector v ∈ R
n such that vTAixi < 0 for all non-zero xi ∈ Ci and

i = 1, . . . , N .

(ii) There are vectors xi ∈ Ci, with i = 1, . . . , N , not all zero such that
∑N

i=1 Aixi � 0.

Proof (ii) ⇒ ¬(i):3 Assume that (ii) holds. Then, for any v ≻ 0 we have

vTA1x1 + . . .+ vTANxN ≥ 0 (3.2)

which immediately implies that (i) cannot hold.

¬(ii) ⇒ (i): Assume that (ii) does not hold, i. e. there are no vectors xi ∈ Ci not all

zero such that
∑N

i=1 Aixi � 0. This means that the following intersection of convex cones

is empty:
{

∑N
i=1 Aixi : xi ∈ Ci, not all zero

}

︸                                              ︷︷                                              ︸

O1

∩
{

x � 0

}

︸     ︷︷     ︸

O2

= ∅. (3.3)

By scaling appropriately it is easy to see that this is equivalent to:
{

∑N
i=1 Aixi : xi∈Ci,

∑N
i=1 ‖xi‖1=1

}

︸                                                  ︷︷                                                  ︸

Ō1

∩
{

x � 0

}

︸     ︷︷     ︸

O2

= ∅ (3.4)

where ‖ · ‖1 denotes the usual spatial 1-norm. Now, Ō1 and O2 are disjoint non-empty

closed convex sets and additionally Ō1 is bounded. Thus, we can apply Corollary 4.1.3

from Hiriart-Urruty and Lemaréchal (2001) which guarantees the existence of a vector

v ∈ R
n such that

max
y∈Ō1

vTy < inf
y∈O2

vTy (3.5)

As the zero vector is in O2, it follows infy∈O2
vTy ≤ 0. However, as O2 is the cone {x � 0}

it also follows that infy∈O2
vTy ≥ 0. Thus, infy∈O2

vTy = 0. Hence, vTy ≥ 0 for all y ∈ O2

and it follows that v � 0. Moreover, from (3.5), we can conclude that for any i = 1, . . . , N

and any xi ∈ Ci with ‖xi‖1 = 1, vTAixi < 0. As Ci ∩
{

x � 0 : ‖x‖1 = 1
}

is compact, it

follows from continuity that by choosing ǫ > 0 sufficiently small, we can guarantee that

vε := v + ε1 ≻ 0 satisfies vT

εAixi < 0 for all xi ∈ Ci ∩
{

x � 0 : ‖x‖1 = 1
}

and all

i = 1, . . . , N .

Finally, it is easy to see that vT

εAixi < 0 is true even without the norm requirement

on xi.

This completes the proof of Theorem 3.1. �

3 That is, we show that if (ii) is true, then (i) cannot hold.
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Comment The theorem thus provides a necessary and sufficient condition for the exis-

tence of a CLCLF. Condition (ii) basically means that if (and only if) there is a non-trivial

linear combination of the all the columns of the different constituent system matrices (us-

ing vectors taken from the corresponding cones) that yields a non-negative value then no

CLCLF exists for the switched system. Unfortunately, to the best of the author’s knowl-

edge, this condition in its present form is difficult to check numerically. However, a slight

reformulation changes this.

3.3.2 Numerical test based on a linear program

To establish a simple numerical test, we note that polyhedral proper convex cones C with

k extremal rays in the non-negative orthant of the R
n
≥0 can be expressed as

C :=

{

x
∣

∣

∣ x =

k
∑

i=1

αiQ
(i), αi ≥ 0, i = 1, . . . , n

}

(3.6)

where Q ∈ R
n×k
≥0 is the (non-singular) generating matrix of the cone, and Q(i) denotes the

ith column of Q. This generating matrix can then be included in the second condition of

the previous theorem to yield the following corollary

Corollary 3.1 (Existence CLCLF, state-dependent switching, polyhedral cones)

Given N Metzler and Hurwitz matrices A1, . . . ,AN ∈ R
n×n and N polyhedral proper

convex cones Ci of the type (3.6) such that R
n
≥0 = ∪Ni=1Ci, precisely one of the following

two statements is true:

(i) There is a positive vector v ∈ R
n such that vTAixi < 0 for all non-zero xi ∈ Ci and

i = 1, . . . , N .

(ii) There are vectors wi � 0 not all zero such that
∑N

i=1 Biwi � 0, where Bi := AiQi.

Proof Virtually identical to that of Theorem 3.1.

The advantage of this reformulation now is that condition (ii) can be checked efficiently

by running a simple feasibility check on a suitably defined linear program, Bertsekas et al.

(2003). For example, it is straightforwart to see that (ii) is fulfilled if and only if the

following linear program is feasible:

argmax 1
Tw̃

subject to B̃w̃ � 0, w̃ � 0, w̃ � 1
(3.7)

where B̃ corresponds to the horizontally concatenated Bi, and w̃ to the vertically stacked

wi. It is then straightforward to run a feasibility check on this linear program, to provide
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an answer in polynomial time. For similar results, the reader may refer to Rami and Tadeo

Rico (2007).

Comment As we noted before in the literature review, such numerical tests will certainly

be useful in practical applications. However, their major drawback is that they typically

give little insight as to why a system may be stable or not. They only answer the stability

question with “yes” or “no”, but in case the answer is “no”, do not help establishing why

this may be the case.

In the following section, we will present an analytical test for the arbitrary switching

case, completing initial work reported in Mason and Shorten (2007). Furthermore, we shall

also comment on how it can give more extensive insights in the stability question.

3.4 Arbitrary switching case

An important special case of the previous results is when each of the cone generating

matrices Qi are the identity matrix. In that case, each switching restricting cone is the

positive orthant itself, meaning that there are no more switching restraints and arbitrary

switching between the modes is allowed. Then, condition (ii) of the corollary above offers

another interpretation: The convex hull of the (polyhedral convex) cone generated by all

the columns of the Ai must not intersect the closed positive orthant except in the origin

in order for a CLCLF to exist.

However, additional necessary and sufficient conditions for the existence of a CLCLF

for each of the constituent systems can be derived — guaranteeing stability of the overall

system under arbitrary switching. This will be given by Theorem 3.2 below.

3.4.1 Main result

Before stating Theorem 3.2, we need a technical result which will simplify its proof sig-

nificantly. The following lemma is in fact very similar to Theorem 3.1, when each of the

generating matrices Qi is the identity matrix.

Lemma 3.1

Given N Metzler and Hurwitz matrices A1, . . . ,AN ∈ R
n×n the following two state-

ments are equivalent:

(i) There is a non-zero v � 0 such that vTAi � 0 for all i = 1, . . . , N .4

(ii) There are no wi ≻ 0 such that
∑N
i=1 Aiwi = 0.

4 Note that with the assumptions of the lemma, vTAi will always be non-zero for a non-zero v � 0.
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Proof (i) ⇒ (ii): Assume there is a non-zero vector v � 0 such that vTAi � 0 for all

i = 1, . . . , N . Thus,

vTA1 + . . .+ vTAN � 0 (3.8)

and for any set of strictly positive vectors wi ≻ 0,

vTA1w1 + . . .+ vTANwN < 0 (3.9)

vT
(

A1w1 + . . .+ANwN

)

< 0 (3.10)

so that

A1w1 + . . .+ANwN 6= 0 (3.11)

In other words, there are no vectors wi ≻ 0 such that
∑N

i=1 Aiwi = 0.

(ii) ⇒ (i): Assuming that there are no vectors wi ≻ 0 such that
∑N

i=1 Aiwi = 0, we

can write

{

A1w1 + . . .+ANwN : wi ≻ 0
}

∩
{

0
}

= ∅ (3.12)

Since the Ai are all Metzler and Hurwitz matrices, it is easy to show that this implies

{

A1w1 + . . .+ANwN : wi ≻ 0
}

︸                                          ︷︷                                          ︸

O1

∩
{

x ≻ 0
}

︸     ︷︷     ︸

O2

= ∅ (3.13)

This corresponds to the intersection of two open convex cones, O1 and O2. As this inter-

section is empty, the two cones are disjoint and there must exist a separating hyperplane

between them, see for instance Rockafellar (1970). In other words, there is a vector v ∈ R
n

such that

vTy < 0 for all y ∈ O1 and vTy > 0 for all y ∈ O2 (3.14)

From the second inequality we get that v has to be non-negative (and non-zero). The first

inequality, in turn, can be written as

vTA1w1 + . . .+ vTANwN < 0 for all wi ≻ 0 (3.15)

Furthermore, since v � 0, and since the inequality has to hold for any choice of (strictly

positive) vectors wi, each individual summand must be less than or equal to zero. How-

ever, this can only be the case if vTAi � 0 for i = 1, . . . , N , which completes the proof of

Lemma 3.1 on the preceding page. �

Some additional notation is also required for the presentation of our second main result.

Let the set containing all possible mappings σ : {1, . . . , n} → {1, . . . , N} be called Sn,N ,
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for positive integers n and N . Given N matrices Ai, these mappings will then be used to

construct matrices Aσ(A1, . . . ,AN ) in the following way:

Aσ

(

A1, . . . ,AN

)

:=
[

A
(1)
σ(1) A

(2)
σ(2) . . . A

(n)
σ(n)

]

(3.16)

that is, the ith column A
(i)
σ of Aσ is the ith column of one of the A1, . . . ,AN matrices,

depending on the mapping σ ∈ Sn,N .

We can now state the following theorem giving a necessary and sufficient condition for

the existence of a linear co-positive Lyapunov function for arbitrary switching between

finitely many positive LTI systems of finite dimension:

Theorem 3.2 (CLCLF existence, arbitrary switching)

Given a finite number of Hurwitz and Metzler matrices A1, . . . ,AN ∈ R
n×n, the

following statements are equivalent:

(i) There is a strictly positive vector v ∈ R
n such that vTAi ≺ 0 for all i = 1, . . . , N .

(ii) Aσ(A1, . . . ,AN ) is Hurwitz for all σ ∈ Sn,N .

Proof (i) ⇒ (ii): Assuming that there exists a positive vector v ∈ R
n such that vTAi ≺ 0

for all i = 1, . . . , N , this of course implies, when looking at the columns of the matri-

ces Ai, that vTA
(j)
i < 0 for any i = 1, . . . , N and j = 1, . . . , n. Thus, it follows that

vTAσ(A1, . . . ,AN ) ≺ 0 for all σ ∈ Sn,N . Next, we note that since the A1, . . . ,AN are

all Metzler matrices, by construction so must be all the Aσ(A1, . . . ,AN ), σ ∈ Sn,N . Fi-

nally, applying Theorem 2.5.3 from Horn and Johnson (1991), we have that all matrices

Aσ(A1, . . . ,AN ), σ ∈ Sn,N , must be Hurwitz.

¬(i) ⇒ ¬(ii): We show that if there does not exist a vector v as described in (i), then

at least one of the matrices Aσ(A1, . . . ,AN ) is not a Hurwitz matrix for some σ ∈ Sn,N .

To begin, assume that there is no non-zero v � 0 such that vTAi � 0 for all i = 1, . . . , N

(note that this is a stronger assumption than the non-existence of a strictly positive vector

v, as stated in (i); we will relax this assumption below). From Lemma 3.1 on page 39 we

then know that there is at least one set of vectors wi ≻ 0 such that

A1w1 + . . .+ANwN = 0 (3.17)

Next, we express w2, . . . ,wN in terms of w1 using diagonal matrices: wi = Diw1

where Di = diag
{

d
(jj)
i

}

and d (jj)
i > 0 for all i = 1, . . . , N and j = 1, . . . , n. We can then

rewrite Equation (3.17) as

A1D1w1 +A2D2w1 + . . .+ANDNw1 = 0 (3.18)
(

A1D1 + . . .+ANDN

)

w1 = 0 (3.19)
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and thus, since w1 ≻ 0, we must have for the determinant

det
(

A1D1 + . . .+ANDN

)

= 0 (3.20)

To simplify notation, define for each mapping σ ∈ Sn,N the following product

pσ :=

n
∏

j=1

d
(jj)
σ(j) (3.21)

for which we note that pσ > 0 for all σ ∈ Sn,N since d (jj)
i > 0 for all i and j. Using the

fact that the determinant of a matrix is multilinear in the columns of that matrix, we can

now express the left-hand side of (3.20) as

det
(

A1D1 + . . .+ANDN

)

=
∑

σ∈Sn,N

pσ det
(

Aσ(A1, . . . ,AN )
)

(3.22)

Recall that the determinant of any square matrix is equal to the product of its eigenval-

ues. Since the eigenvalues of a Hurwitz matrix in R
n×n have strictly negative real parts,

its determinant will either be strictly positive (when n is even) or strictly negative (when

n is odd), but never zero. Thus, using (3.22) in (3.20), we conclude that there must be at

least one σ ∈ Sn,N for which Aσ(A1, . . . ,AN ) is not a Hurwitz matrix.

To recapitulate, we have shown so far that if there is no non-zero v � 0 such that

vTAi � 0 for all i, then at least one of the Aσ(A1, . . . ,AN ) matrices has to be non-

Hurwitz. However, in order to finish the proof, we need to extend this result to strictly

positive v, as stated in the theorem. So let us assume that there is no common v ≻ 0 such

that vTAi ≺ 0 for all i = 1, . . . , N . If, additionally, there was no v � 0 either such that

vTAi � 0 for all i, then the desired result follows from the above discussion. However, if

there was such a v � 0, an additional argument is needed.

Assume that no v ≻ 0 satisfies vTAi ≺ 0 for all i. Letting Ai(ε) := Ai + ε1n×n where

ε > 0 and 1n×n is the n×n matrix of all ones, it then follows that there cannot be a non-

zero v � 0 achieving vTAi(ε) � 0 for all i. This can be proved by contradiction: Assume

there was such a vector v � 0 for which vTAi(ε) � 0 for all i and ε > 0. Then

vT
(

Ai + ε1n×n
)

� 0 (3.23)

vTAi � 0− εvT
1n×n (3.24)

vTAi ≺ 0 (3.25)

for ε > 0 and i = 1, . . . , N , which contradicts the first assumption; thus, there is no

non-zero v � 0 so that vTAi(ε) � 0 for all i = 1, . . . , N .

Now, choosing ε > 0 small enough to ensure all Aj(ε) are still Hurwitz and Metzler

matrices, it follows from our earlier argument that there is at least one σ ∈ Sn,N so that

Aσ

(

A1(ε), . . . ,AN (ε)
)

is non-Hurwitz.

Finally consider a sequence of εk such that εk → 0 as k → ∞ and where the εk are small

enough so that all Aj(εk) are still Hurwitz and Metzler matrices. Since these matrices and
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thus all Aσ

(

A1(εk), . . . ,AN (εk)
)

depend continuously on εk, it follows for all σ ∈ Sn,N
that

Aσ

(

A1(εk), . . . ,AN (εk)
)

→ Aσ(A1, . . . ,AN ) as εk → 0 (3.26)

And since there is at least one σ ∈ Sn,N for which Aσ

(

A1(εk), . . . ,AN (εk)
)

is non-Hurwitz

this will also be the case for Aσ(A1, . . . ,AN ).

This completes the proof of Theorem 3.2. �

3.4.2 Remarks

Theorem 3.2 states thatN positive LTI systems have a common linear co-positive Lyapunov

function v(x) = vTx if and only if all the Aσ(A1, . . . ,AN ) matrices are Hurwitz matrices,

for all σ ∈ Sn,N . We recall that in this case any switched system formed with any number

of these subsystems would be uniformly asymptotically stable under arbitrary switching.

We note also that if the AiQi matrices from Section 3.3 are all square Metzler and

Hurwitz matrices, then this Hurwitz condition can also be used to give a solution to the

state-restricted switching problem.

A piece of Matlab
® code to conveniently check the Hurwitz condition (ii) of Theo-

rem 3.2 is given at the very end of this chapter. Note that this requires the computation

of the spectra of Nn matrices of dimension n× n. This may, on a computational level, be

significantly more expensive (and possibly even infeasible) compared to the linear program

based test described earlier. However, a very recent paper by Narendra and Shorten (2010)

provides an efficient, necessary and sufficient test for Hurwitz stability of Metzler matri-

ces. The test involves recursively checking the sign of main diagonal entries of a sequence

of lower dimensional matrices that are created by adding two matrices and is thus very

inexpensive to perform.

Finally, as stated earlier, the above result may also be derived from the independent,

more general results on P-matrix set by Song et al. (1999).

3.4.3 Insights from Hurwitz condition

We stated earlier that analytical results as shown above can lead to more insights into the

stability problem as compared to numerical tests. Hence, before extending our results to

discrete-time systems, we would like to give an example in support of this claim.

Assume a set of matrices does not pass the stability test given by statement (ii) of

Theorem 3.2. In particular, assume that it is the matrix Aσ0 that is not Hurwitz stable,

σ0 ∈ Sn,N . If one has some form of control over the entries in the original matrices

A1, . . . ,AN , what can be done so that Aσ0 may eventually become Hurwitz? Clearly,

sufficiently decreasing the entries on the main diagonal and/or the off-diagonal entries will

eventually make the matrix become Hurwitz stable. While this is straightforward to show
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(see for instance Horn and Johnson, 1991, Chapter 2.5), it is also somewhat intuitive given

the fact that A is Hurwitz if and only if there exists a vector v ≻ 0 such that Av ≺ 0, and

hence decreasing the non-negative off-diagonals as well as decreasing the negative diagonal

elements works toward satisfaction of that inequality. An additional argument is given by

the following observations.

Assuming we have some form of control over the matrix entries, another question one

may now ask is which matrix element in particular to manipulate first?5 In this context,

it is useful to note that, by construction, any Metzler matrix A can be written as

A = P − αI with P � 0 and for some α ≥ 0 (3.27)

and Hurwitz stability of A is equivalent to α > ρ(P ). Thus, if A is not Hurwitz, ρ(A)

is “too large” for the given α. Now, to work toward satisfaction of the inequality, the

question is which element p(ij) would have (locally) the biggest impact on ρ(P ) in order

to decrease it? Assuming A is irreducible, we can give the following argument. Given the

irreducibility assumption, the non-negative matrix P will also be irreducible. Application

of the Perron-Frobenius theorem then guarantees that its Perron root will be algebraically

simple (Horn and Johnson, 1985, Theorem 8.4.4) and the corresponding left- and right

Perron eigenvectors will be strictly positive. This allows us to apply a standard result (see

for instance Stewart, 1973) concerning the partial derivatives of simple eigenvalues of a

matrix with respect to the matrix entries: Given some matrix
(

p(ij)
)

= P ∈ R
n×n with

a simple eigenvalue λ and corresponding normalised left- and right eigenvectors η and ξ

such that ηTξ = 1, then

∂λ

∂p(ij)
= η(i)ξ(j) locally, for each i, j = 1, . . . , n (3.28)

This means, in the case where P is non-negative and irreducible, that the Perron root

will always decrease if any element in the matrix is decreased (which is consistent with

our earlier remarks). But furthermore, if both Perron eigenvectors can be computed, one

immediately knows which entry (i, j) to target first — namely that where η(i)ξ(j) is largest.

Application of this result to the original problem and Aσ0 gives an indication which

entry a
(ij)
k where k = σ0(j) in the original system matrix Ak ∈ A1, . . . ,AN to modify

first. However, this is only a local result, i. e. having reduced a(ij)k somewhat may suddenly

cause a different entry (potentially in a different system matrix) to have the largest impact

on driving Aσ0 toward Hurwitz stability. In fact, the off-diagonal elements can only be

reduced to zero but not beyond (in order for the matrix to stay Metzler) — and even if

one particular off-diagonal element is reduced to zero the matrix may still not be Hurwitz.

Lastly, one may wonder what the impact of reducing a(ij)k might have on other matrices

in Aσ that include it? Clearly, our earlier observations guarantee that reducing entries in

the matrices always makes them “more stable”, in other words decreasing the elements in

one matrix will never destroy the Hurwitz stability of other matrices in Aσ.
5 The author is very grateful to Prof. S. Kirkland for pointing him in this direction.
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3.5 Discrete-time switched positive systems

As we mentioned earlier, most of the results for continuous-time switched positive linear

systems can easily be applied to discrete-time systems as well, Fornasini and Valcher (2010).

The discrete time version of the system given in Definition 3.1 on page 35 would be

x(k + 1) = As(x(k),k)x(k) with x(k = 0) = x0 � 0 (3.29)

where s : Rn ×R → {1, . . . , N} is again some piecewise constant switching function that

may or may not depend on the state vector x(k), and where the system matrices Ai ∈ R
n×n

for each i = 1, . . . , N must now be non-negative in order to ensure positivity, and Schur-

stable (i. e. all their eigenvalues must lie inside the unit circle).

A linear co-positive Lyapunov function v(x) = vTx for such systems would then have

to fulfil

v(x) > 0 for all non-zero x � 0 (3.30)

v
(

x(k + 1)
)

− v
(

x(k)
)

< 0 for all k ≥ 0 and x(k) ≻ 0 (3.31)

Clearly, it will be a CLCLF for the switched system (3.29) if (and only if) it is a LCLF for

each constituent system, that is if and only if

v(Aix)− v(x) = vT(Ai− I)x ≺ 0 for all i = 1, . . . , N and non-zero x ≻ 0

Thus, by letting Ãi := (Ai − I) for i = 1, . . . , N , all our earlier results directly apply to

the discrete-time case as well, noting that all Ãi will of course be Metzler (the off-diagonal

elements remain non-negative after subtraction of the identity matrix) and Hurwitz (since

the spectral radius of the Ai is strictly less than one, subtracting the identity matrix will

shift all eigenvalues into the open left half of the complex plane).

3.6 Examples of usage

While we will give in Chapter 6 an in-depth discussion of an application where our results

are used to prove stability of a power control algorithm for wireless networks, we still would

like to give a few examples here at this point to illustrate our above results.

3.6.1 Numerical example

As a short example for Theorem 3.2, consider three Metzler and Hurwitz matrices

A1 =







−12 6 6

1 −10 2

5 3 −10






, A2 =







−12 4 0

6 −10 9

4 3 −13






, A3 =







−9 2 8

6 −10 4

3 0 −11







It turns out that the Aσ(A1,A2,A3) are all Hurwitz matrices, for any σ ∈ S3,3; hence

a switched positive linear system with these matrices will be uniformly asymptotically
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stable under arbitrary switching. If, however, the (3,1)-element of A3 is changed from 3

to 5 — note that after change A3 is still a Metzler and Hurwitz matrix — then the matrix

A(3,1,3) =
[

A
(1)
3 A

(2)
1 A

(3)
3

]

will have an eigenvalue λ ≈ 0.06 which violates the Hurwitz

condition.

3.6.2 Switched positive systems with multiplicative noise

Consider the class of switched positive systems

ẋ = A(t)x, A(t) ∈
{

A1, . . . ,AN

}

If all N constituent systems share a co-positive linear Lyapunov function, then it follows

that the system

ẋ = A(t)D(t)x, A(t) ∈
{

A1, . . . ,AN

}

where D(t) = diag
{

d(ii)(t)
}

for i = 1, . . . , n is a diagonal matrix, is also exponentially

stable, provided that the d(ii)(t) are strictly positive and bounded for all t and i. Systems

of this type arise in situations where the state is reset (for example, by quantisation).

3.6.3 Robustness of switched positive systems with channel

dependent multiplicative noise

An important class of positive systems is the class that arises in certain networked control

problems. Here, the system of interest has the form:

ẋ = A(t,x)x+
[

C1(t,x) + . . .+Cn(t,x)
]

x

where we assume
(

A(t,x) +C1(t,x) + . . .+Cn(t,x)
)

to be always Metzler and Hurwitz

(for all t and x ∈ R
n
≥0), where A(t,x) ∈ R

n×n is Metzler, and where Ci(t, x) � 0 is an

n × n matrix that describes the communication path from the network states to the ith

state; namely it is a matrix of unit rank with only one non-zero row. Further, we allow the

network interconnection structure to vary with time between N different configurations,

so that A(t,x) ∈
{

A1, . . . ,AN

}

and Ci(t,x) ∈
{

Ci1, . . . ,CiN

}

for i = 1, . . . , n. Our

principal result can then be used to give conditions such that this system is exponentially

stable. Further, by exploiting simple properties of Metzler matrices (all off-diagonal entries

are non-negative), we get the robust stability of the related system:

ẋ = A(t,x)x+
[

C1(t,x)D1(t) + . . .+Cn(t,x)Dn(t)
]

x

where Di(t) is a non-negative diagonal matrix whose diagonal entries are strictly positive,

but with entries bounded less than one, i = 1, . . . , n.
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3.7 Conclusion

In this chapter our main results were two necessary and sufficient conditions for the exis-

tence of a certain type of Lyapunov function for switched positive linear systems, namely

common linear co-positive Lyapunov functions (CLCLF). As we noted earlier, results of

this type are very useful as, loosely speaking, existence of such functions implies exponen-

tial stability of the overall switched system.

First, we considered the case where the switching rule of the system depends on or

is restricted by the system state. More concretely, the state space was assumed to be

partitioned by (possibly overlapping) proper convex cones that were each associated with

one of the constituent subsystems (but multiple cones could be associated with the same

mode). Then, with the system’s state being in a given location of the state space, the

system could only be in the mode(s) associated with the cone(s) that included that location.

For this setting, two necessary and sufficient conditions were given for the existence of

CLCLFs: The first one applied to any type of proper convex cone (provided they are

convex), while the second one required the cones to be polyhedral. The latter result

had the advantage that it directly allowed a simple linear program to be defined whose

feasibility was then equivalent to the Lyapunov function existence. However, both cases

gave little insight into the overall existence problem and in particular what could be done

if the condition was violated.

This led to a second result which applied to the general, arbitrary switching case (in

which, of course, the constrained switching cases is included). We showed that existence

of CLCLFs is equivalent to a Hurwitz condition on a set of matrices that contains all

matrices that can be created by recombining the columns of the original system matrices.

Apart from being very general, this algebraic condition had the additional benefit of giving

insights into what could be done (and to which subsystem) if the condition was violated.

Finally, after commenting on how our results directly carry over to the discrete time

case, three examples were given to illustrate some of the implications of our work.

At this point, we shall leave the domain of switched positive systems for now and

consider cooperative control problems in the next two chapters. Although our subsequent

results apply to general (not necessarily positive) systems, they may be interpreted as

adding an additional feedback loop to a system that switches between different topologies.

∗ ∗ ∗
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Chapter appendix

The following Matlab
® code for easy checking of the Hurwitz condition Theorem 3.2(ii)

can be obtained from http://goo.gl/JM31u.

function [result,perm] = check_hurwitz(Ac)

%Checks Hurwitz condition for all column permutations
%
% [result,perm] = check_hurwitz(Ac) where
% Ac − cell array with the A_j matrices in it
% result − TRUE (all matrices are Hurwitz), FALSE if not
% perm − indices of all the permutations of colums for
% which the condition is violated
%

% Florian Knorn, florian@knorn.org, 14 April 2011

%% Some error catching
if nargin ~= 1

error( 'Please provide cell array with matrices' );
end
if ~iscell(Ac)

error( 'Please provide * cell * array with matrices' );
end

%% Initialisations
result = true;
N = length(Ac);
n = length(Ac{1});
perm = [];
maxrho = −1e10;
rhoperm = [];
sigmas = char(zeros(N^n,n));

%% Generate permutations
for i = 1:length(sigmas) % count from 1 to N^n in base N

sigmas(i,:) = dec2base(i −1,N,n);
end

% Convert strings generated by dec2base back to numbers
sigmas = abs(sigmas) − 47; % numbers
sigmas(sigmas>10) = sigmas(sigmas>10) − 7; % letters
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%% Iterate through permutations
for i = 1:length(sigmas)

% create A_sigma for Hurwitz test
A_sigma = zeros(n,n);
for j = 1:n % columns

temp = Ac{sigmas(i,j)};
A_sigma(:,j) = temp(:,j);

end

% perform Hurwitz test
rho = max(real(eig(A_sigma)));
if rho > maxrho

maxrho = rho;
rhoperm = sigmas(i,:);

end
if max(real(eig(A_sigma)))>0

result = false;
perm = [perm;sigmas(i,:)];

end

end
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Switching and Feedback

This chapter presents a new paradigm for cooperative control and consensus in
multi-agent networks with switching topologies. We present and prove stability
of three algorithms in this framework that make different assumptions on the
overall setting and available information in the network, and provide several
simulation results to demonstrate their use.

Chapter contents

4.1 Introduction

4.2 Preliminaries

4.3 Algorithm 1: Complete knowledge of system

4.4 Algorithm 2: System only partially known

4.5 Algorithm 3: Dynamics and controllers

4.6 Extension to asynchronous state updates

4.7 Conclusion

4.A Chapter appendix

4.1 Introduction

The objective of this chapter is to develop a novel cooperative control scheme that applies

to a very general class of problems. It presents joint work with Prof. M. Corless and Prof.

R. Shorten and has been published in Knorn et al. (2011a,b). On a very abstract level,

our overall approach may well be interpreted as a switched system with an added feedback

loop.

While the overall setting will be introduced properly in Section 4.2, let us briefly state

it here. Consider a system that consists of a large number of interconnected agents (say,

a fleet of cars with inter-car communication capabilities) that all have some form of local

behaviour (driving speed). This local behaviour has both a local and global effect (CO2

emissions locally, which result in the total emissions produced by the fleet globally). The

objective now is twofold: (i) regulate the global effect or behaviour of the network (such

as limit the overall emissions) subject to (ii) some additional local constraint in the form

of an inter-agent agreement on some quantity of interest that depends on each node’s own

51
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behaviour (equalise emissions between cars for instance which depend on the car’s driving

speed). This very general setting is encountered in many more situations, such as:

– cooperative charging of electric vehicles in smart grids

(global constraint: total power available, local constraint: charging time);

– regulation of inflation in economic networks

(global constraint: inflation, local constraint: inter-bank interest rates);

– distributed Quality-of-Service control in cloud computing applications

(global constraint: total bandwidth, local constraint: server load, see Stanojević and

Shorten 2009a);

– thermal aware load balancing in large data centres

(global constraint: total work load, local constraint: server temperatures)

Clearly, while cooperative control and the control of networked systems are active topics

of research across various disciplines, many fundamental questions remain unanswered. Our

objective in this chapter is to provide a new cooperative control paradigm that addresses

problems of this type. To do this we exploit the fact that there is usually a non-unique

solution to the global regulation problem. In the CO2 emissions example for instance,

the aggregate emissions are just the sum of the individual emissions and hence there is

no unique distribution of individual contributions that results in one particular amount of

global emissions. Indeed, the key idea will be to use this degree of freedom to solve the

global regulation problem while at the same time fulfilling some additional local constraints.

For example, in each of the above applications, not only do we seek a certain global

behaviour, but we also require some level of inter-agent fairness (in the CO2 example for

instance we wish to regulate CO2 emissions such that each car is equally polluting).

The idea of inter-agent fairness or “agreement” immediately brings about the notion of

consensus and coordination in multi-agent networks. However, as discussed in the literature

review, most of the work in this area assumes bi-directional communications (undirected

communication graphs) between agents, often does not cater for time changing topologies

in the communication network, and, in many cases, does not consider dynamics involved in

state changes (or only very specific types of linear dynamics for specific applications). Most

importantly, however, while many consensus schemes will correctly produce an agreement,

it appears little work has been done to control and use this consensus value in order to

influence the overall network behaviour and achieve some form of “common goal”.

Contributions

In the present work we thus not only attempt to be free of these commonly made assump-

tions — in particular the graph symmetry assumption upon which much of the underlying
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mathematical machinery of the previous work is based — but aim at additionally influenc-

ing the consensus value reached in order to meet a global objective. To achieve this, we

start with a classic consensus scheme, but add an external input to regulate the consen-

sus value according to a global performance measure that depends on the entirety of the

network’s states. Our results will be applicable to a wide range of situations, in particular

when only limited knowledge about the network is available.

Structure

The remainder of this chapter is structured as follows: The next section will introduce

the problem setting more concretely and define some necessary notation and assumptions.

This is followed by three algorithms and convergence proofs thereof (together with a num-

ber of comments and simulations) that give a solution to the problem making different

assumptions on the problem setting. These form the main contributions of this chapter.

Finally, after extending our results to the case of asynchronous communications, we will

draw some conclusions, discuss open questions and suggest some future directions.

4.2 Preliminaries

4.2.1 Overall setting and problem statement

We consider the following situation. In a network with n > 1 agents or “nodes” and a

number of directed communication links1 that may change over time, each node i has

a physical state (or just “state”) that it can change, either directly or indirectly through

certain dynamics. Furthermore, associated to each node is also what we call a utility value:

This value directly depends on the node’s physical state and represents some particular

quantity of interest that is somehow related to, but usually different from, the physical

state. This dependence is given by each node’s utility function, which is generally assumed

to differ between nodes.

Additionally, we define a certain global value that depends directly on all the nodes’

physical states; this dependency is given by the global function. By suitable means of

communication (or decentralised estimation) either all or just some nodes in the network

have access to this global value.2 Finally, we assume that the agents (locally) share their

current utility value through (directed) communication links. This set-up is illustrated

in Figure 4.1 on the next page.

1 This could be due to each node broadcasting information about its state at regular intervals, and other
nodes in proximity picking up this broadcast — but these nodes do not necessarily have to communicate
back.

2 That is, either the global value can be measured or estimated locally by the nodes, or it will be
communicated to them by some form of “external” broadcast (for instance sent from a base station that
itself can estimate or measure that value).
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Global property g
(

r(1), . . . , r(n)
)

is measured

r, t

r, t

r, t

r, t
r, t

r, t

r, t

r, t

Feedback of
global propertyr

t t=f(r)

Node with some
utility function

Communi-
cation link

Network Base station

Figure 4.1: Illustration of the basic setting. Each node has a state r and a utility function
f(r) associated with it which describes the utility value’s dependency on the state.
The global property g

(

r(1), . . . , r(n)
)

depends on all the network states.

Problem statement

The objective is now for all nodes in the network to reach consensus on their utility values,

while also, jointly, driving the global value to a prescribed, “desired” value. This should be

achieved in a fully decentralised way, using simple algorithms that will operate in a variety

of settings, including non-linear utility functions that are only known approximately, when

not all nodes have access to the global value and when the state updates are not necessarily

performed synchronously.

Solutions to the problem

To address this problem setting, we will develop and prove convergence of three differ-

ent decentralised algorithms that are designed to achieve the objectives in three different

situations:

(i) Physical state: No dynamics involved, can be changed instantly.

Utility functions: Must be perfectly known.

Global value: All nodes must have knowledge of.
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(ii) Physical state: No dynamics involved, can be changed instantly.

Utility functions: Only lower and upper growth bounds must be known.

Global value: Not all nodes must have knowledge of.

(iii) Physical state: Dynamics may be involved in state change.

Utility functions: Only approximate knowledge required, can be filtered values.

Global value: Not all nodes must have knowledge of (but at least one).

Additionally, in each case the underlying communication network can be directed and

time varying, both the utility functions as well as the global quantity’s dependence on the

network states can be non-linear, and the state updates in the network must not necessarily

be performed synchronously (in other words, asynchronous communications are covered by

our approach as well).

4.2.2 Notation

Our problem setting is best described using typical notions from graph theory, Harary

(1969). Let V = {1, . . . , n} be the vertex set of the network and let Ak ∈ V × V be the

edge set representing the (directed) communication links at time k = 0, 1, . . . between the

nodes. We shall always assume that each node can also communicate with itself, i. e. there

is always a self-loop on each node. The overall directed graph describing the communication

structure of the network at time k is the pair Gk = (V ,Ak), where we explicitly assume

that the communication links may change over time, but not the node set. The set of (in-

)neighbours of node i is called N (i)
k ; it contains all the nodes j that can send information

to node i (which also includes node i itself), i. e. N (i)
k = { j | (j, i) ∈ Ak }. In a slight abuse

of notation we then define the graph’s adjacency matrix A as follows: a(ij)k = 1 if j ∈ N (i)
k ,

and a
(ij)
k = 0 otherwise. Strictly speaking, this would be the transpose of the adjacency

matrix as defined in the standard literature. Similarly, we say that Gk is the graph of a

non-negative square matrix Sk if for each i, j = 1, . . . , n, s(ij)k 6= 0 if and only if j ∈ N (i)
k .

The network is called connected (in the literature also referred to as strongly connected)

if there exists a path from every node to every other node in the network, respecting the

orientation of the edges. This is the case if and only if the adjacency matrix is irreducible

(Horn and Johnson, 1985, Theorem 6.2.24). We shall either assume in the following that

all networks dealt with are strongly connected, or, if this is not the case, we use the concept

of joint connectivity: A set of graphs is called jointly (strongly) connected if the union of

those graphs is (strongly) connected.3

A matrix P ∈ R
n×n is called row-stochastic if all its entries are non-negative and all

its row-sums equal one, in other words p(ij) ≥ 0 and P1 = 1. Similarly, row sub-stochastic

matrices are defined to be real valued, non-negative matrices whose row-sums are less than

3 The union of a set of graphs on a common vertex set is defined as the graph consisting of that vertex
set and whose edge set is the union of the edge sets of the constituent graphs.
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or equal to one (but with at least one row-sum strictly less than one). A strictly row

sub-stochastic matrix is a row sub-stochastic matrix where all row-sums are strictly less

than one.

Let r(i)k ∈ R be the physical state of node i at time k where k = 0, 1, . . . , so that

rk forms the state vector of the network. Node i’s utility value t(i) ∈ R depends on the

physical state via a continuous and strictly increasing utility function f (i) : R → R, that

is t(i)k = f
(i)(

r
(i)
k

)

. Further properties of the utility functions (such as invertibility) will

be assumed where necessary. Note that for convenience we will often write the utility

functions in vector form, i. e. we use rk = f(tk) to represent t(i)k = f
(i)(

r
(i)
k

)

for each i.

Furthermore, let g : Rn → R be a global function that depends on all the states, which

we assume to be element-wise strictly increasing. Desired values are usually denoted with

subscript asterisks, so that, for example, the desired value for the global function is always

denoted by g∗. Based on this desired value, the solution to the problem thus consists of a

vector r∗ for which f (i)(
r
(i)
∗

)

= t∗ for all i and g(r∗) = g∗.

4.2.3 Growth conditions

Throughout we shall assume that the utility functions and the global function are contin-

uous and satisfy the following growth conditions

Assumption 4.1 (Bounded growth rates)

There are positive constants d(i), d̄(i), h(i), h̄(i) such that

d(i) ≤ f (i)(ra)− f (i)(rb)

ra − rb
≤ d̄(i) for all ra, rb ∈ R with ra 6= rb (4.1a)

h(i) ≤ g(r +∆rei)− g(r)

∆r
≤ h̄(i) for all r ∈ R

n and all ∆r ∈ R with ∆r 6= 0

(4.1b)

for all i = 1, . . . , n.

Loosely speaking, the growth conditions require the utility functions to be strictly increas-

ing with a rate that is bounded away from zero and upper bounded; the global function

must also be strictly increasing with a non-zero but also upper bounded rate coordinate-

wise.

4.2.4 Feasibility and existence of unique solution

Before presenting our main results we need to first show that indeed a unique solution to

the overall regulation problem exists. As we show next, the existence of such a solution is

guaranteed by the above growth conditions.

First, we note that the conditions on the continuous utility functions guarantee that

they are strictly monotone increasing and unbounded; hence each utility function has a
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continuous inverse ϕ(i) so that

ϕ(i)
(

f (i)(r)
)

= r and f (i)
(

ϕ(i)(t)
)

= t (4.2)

for all t, r ∈ R. Let ϕ(t) :=
[

ϕ(1)(t(1)) , . . . , ϕ(n)(t(n))
]T

denote the inverse of f(t).

Furthermore, with t∗ = t∗1 define

θ(t∗) := g
(

ϕ(t∗)
)

= g(ϕ(t∗1)) (4.3)

In order for our problem to have a solution, it is thus necessary and sufficient that the

equation θ(t∗) = g∗ has a solution for t∗ for all g∗, that is, the function θ is invertible.

When a solution for t∗ exists, the solution for the state vector is given by r∗ = ϕ(t∗1).

We now show that, as a consequence of the growth conditions, the function θ is indeed

invertible. Using the result in Section 4.A.1 on page 80, we obtain that, for any ta, tb ∈ R,

θ(ta)− θ(tb) = g
(

ϕ(ta1)
)

− g
(

ϕ(tb1)
)

(4.4)

=

n
∑

i=1

c(i)(ta − tb) where
h(i)

d̄ (i)
≤ c(i) ≤ h̄(i)

d(i)
(4.5)

From this it follows that θ satisfies the growth condition

0 < c ≤ θ(ta)− θ(tb)

ta − tb
≤ c̄ for all ta, tb ∈ R with ta 6= tb (4.6)

where

c =

n
∑

i=1

h(i)

d̄ (i)
and c̄ =

n
∑

i=1

h̄(i)

d(i)
(4.7)

Satisfaction of the above growth condition implies that θ is invertible, hence, our problem

always has a unique feasible solution.

With all these definitions given we are now ready to derive the main contributions of

this chapter. At the heart of each of the algorithms presented in the following sections will

be a recursive update law according to which the nodes are to adjust their physical state.

We would like to emphasise the fact that these update laws indeed represent a decentralised

approach — they only require locally available information from neighbouring nodes, and

the global term (which is assumed, ideally, to be estimated in a decentralised fashion as

well).

4.3 Algorithm 1: Complete knowledge of system

The first algorithm provides a control law that will be suitable for situations where the

utility functions are invertible functions and are perfectly known to the designer. Situations

like these are encountered, for instance, in the computer communication networks space,
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Stanojević and Shorten (2008). Also, the value of the global function must also be accessible

to all nodes at all times.

Before stating it, let us present the following lemma which will simplify the proof of

our main result.

Lemma 4.1 (Consensus with common input)

Let Pk ∈ R
n×n be a sequence of matrices taken from a finite set of primitive, row-

stochastic matrices with strictly positive main diagonal entries, and ϑ
(

xk, k
)

a sequence of

real numbers.

If xk =
(

x
(1)
k , . . . , x

(n)
k

)

T evolves for some xk=0 = x0 ∈ R
n according to

xk+1 = Pkxk + ϑ
(

xk, k
)

1 (4.8)

then the elements of xk will approach each other over time, that is

lim
k→∞

x
(i)
k −x(j)k = 0 (4.9)

for all i, j ∈ {1, . . . , n}.

Proof For k ≥ 1, define

x̃k := σk1 where σk :=

k−1
∑

i=0

ϑ
(

x(i), i
)

(4.10)

Since Pk is row-stochastic,

Pkx̃k = Pk
[

σk1
]

= σkPk1 = σk1 = x̃k (4.11)

Hence

x̃k+1 = x̃k + ϑ
(

xk, k
)

1

= Pkx̃k + ϑ
(

xk, k
)

1 (4.12)

Letting yk = xk − x̃k, it follows from (4.8) and (4.12) that yk+1 = Pkyk. Since all

the Pk are taken from a finite set of primitive and row-stochastic matrices, there exists a

constant scalar ϑ̄ such that

lim
k→∞

yk = ϑ̄1 (4.13)

see for instance Hartfiel (1998). This means that as k → ∞, the elements in yk approach

a common value, ϑ̄. Since xk = yk + σk1 the desired result follows. �
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4.3.1 Main result

The basic idea of the following algorithm consists of running a classical consensus scheme

directly on the utility values with an additional global term added in each node. The actual

required state update is then calculated (“reverse engineered”) from these new utility values

using the inverse utility function.

Theorem 4.1 (Algorithm 1: Complete knowledge of system)

Consider the standard situation as described in the Notation section and assume that

the utility functions f (i) and the global function g are continuous and satisfy the growth

condition. Furthermore, assume that each node, using the inverse of its utility function,

can calculate its physical state corresponding to a particular utility value.

For any initial condition rk=0 = r0 ∈ R
n, and any sequence of strongly connected

communication graphs, suppose that the nodes iteratively update their physical states based

on

t
(i)
k+1 = t

(i)
k + η

∑

j∈N
(i)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(

g∗ − g(rk)
)

(4.14a)

r
(i)
k+1 = ϕ(i)

(

t
(i)
k+1

)

(4.14b)

for some

0 < η <
1

n− 1
and 0 < µ <

2

c̄
(4.15)

Then, the physical state vector rk converges asymptotically to r∗ for which f (i)
(

r
(i)
∗

)

= t∗

for all i and g(r∗) = g∗.

Proof The control equation (4.14a) can be expressed as

tk+1 = Sktk + µ
[

g∗ − g
(

ϕ(tk)
)]

1 (4.16)

where

s
(ij)
k =



















1−∑
j∈N

(i)
k

η if j = i

η if j ∈ N (i)
k

0 otherwise

(4.17)

Clearly Sk is a row-stochastic matrix. The bounds in (4.15) on η guarantee that, for

all i, the elements s(ii)k and s(ij)k are positive for j ∈ N (i)
k . Thus the graph corresponding to

Sk is the (strongly) connected communication graph at time step k; this implies that Sk

is irreducible. Furthermore, since the main diagonal entries of Sk are all strictly positive,

this matrix is primitive (Horn and Johnson, 1985, Lemma 8.5.5). Noting that the number
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of strongly connected graphs on n nodes is finite, it follows that all the Sk matrices are

contained in a finite set.

Having shown these properties of the Sk matrices we can now readily apply Lemma 4.1

on page 58 which guarantees that t(i)k − t
(j)
k → 0 as k grows. Considering the fact that in

any practical implementation of this algorithm quantisation effects will inevitably occur,

this implies that the evolution of each utility t(i) will eventually be described by

t̄k+1 = t̄k + µ
[

g∗ − g
(

ϕ(t̄k1)
)]

︸                          ︷︷                          ︸

=:ψ(t̄k)

(4.18)

It is well know that such one-dimensional iterated maps have a unique and globally asymp-

totically stable fixed point t∗ = ψ(t∗) if
∣

∣

∣

∣

ψ(ta)− ψ(tb)

ta − tb

∣

∣

∣

∣

≤ β < 1 (4.19)

for any ta, tb ∈ R and ta 6= tb, Hilborn (1994). So let us determine suitable bounds for µ so

that the above inequality is satisfied and the system will indeed converge to a fixed point.

Considering any ta, tb ∈ R with ta 6= tb, we have

ψ(ta)− ψ(tb) = ta − tb − µ
[

θ(ta)− θ(tb)
]

(4.20)

where θ(t) = g
(

ϕ(t1)
)

. We have already shown that

0 < c ≤ θ(ta)− θ(tb)

ta − tb
≤ c̄ (4.21)

from which the following bounds can be established

1− µc̄ ≤ ψ(ta)− ψ(tb)

ta − tb
≤ 1− µc < 1 (4.22)

Thus, condition (4.19) holds if 1−µc̄ > −1, that is, µ < 2/c̄ which is one of the hypotheses

of the theorem. Convergence of the one-dimensional system (4.19) to t∗ corresponds to all

the utility values of all nodes converging to the same value t∗; since ψ(t∗) = t∗ can only

be the case if g
(

ϕ(t∗1)
)

= g∗, we obtain the result that g(r∗) = g∗ where r(i)∗ = f (i)(t∗),

i. e. the original system converges to the desired solution.

This concludes our proof of Theorem 4.1. �

Comment The control law (4.14a) has two components: One aimed at achieving con-

sensus on the utility values, the other at regulating the global value. In order to make this

control law easier to understand and implement we suggested a rather specific form for the

consensus part — it only involves one parameter (the gain η) together with the summation

over the differences of utility values. As we stated earlier, the bounds on the gain η are

used ensure that this formulation results in primitive, row-stochastic averaging matrices Sk
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so that Lemma 4.1 on page 58 can be applied. Clearly, this specific formulation does not

necessarily have to be used, and Theorem 5.1 on page 97 in the next chapter, whose claims

are similar to Lemma 4.1 on page 58, would allow for a much broader class of averaging

schemes to be employed.

4.3.2 Simulations

To produce time varying graphs for our simulations, we made use of random geometric

graphs with time varying connection radii (or distance parameters), see Penrose (2003);

Santi (2005). A geometric graph is created by distributing nodes over a defined area

(typically, the unit square is used), associating a connection radius to each node i and

then connecting it to all the nodes j that lay within node i’s connection radius (which

could be thought of as a “broadcast radius”, that is an area within which other nodes j can

receive information from node i). In all the examples here, each node’s physical state is

interpreted as its connection radius,4 and thus, as the states change so will the network’s

topology. All examples use graphs with n = 25 nodes.

t

Time step k

r

g(r)

0 5 10 15 20 25 30 35 40 45 50

0.25

0.45

0.65
51

53

55

1.8

2.4

3

Figure 4.2: Simulation of Algorithm 1.

The global and utility functions used for the simulation of Algorithm 1 were of the

quadratic type, see Section 4.A.2 and Figure 4.8 on page 81. For these functions it is

4 However, if a state is less than 0 or larger than 1.5, it is interpreted as 0 or 1.5 respectively to determine
the graph topology.
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straightforward to determine the growth-bounds as required by the theorem and calculate

the bounds on the gains µ and η used in the update equation.

Figure 4.2 on the preceding page shows the results for a desired global value of g∗ =

54, when the network was initialised with a common physical state of r(i)0 = 0.35 for

i = 1, . . . , 25. The subplots show the evolution over time of the value of the global term

(with the desired value marked by the dashed line), the physical states and the utility

values, respectively. As can be seen, the network quickly reaches consensus on the utility

values. The general increase in the physical state values is driven by the, initially, lower

than desired global value, which then pushes the global value towards its target value.

The physical states (interpreted as the connection radii for the underlying communication

graph) remained large enough for the network to be strongly connected in each time step.

In closing, note that the theorem requires a very precise setting where perfect knowledge

of the utility functions (and their inverses in particular) is required. Additionally, every

node needs to have access to the value of the global term which may not be possible in

all applications. In that regard, the algorithm and its generalisation developed in the next

section requires weaker assumptions on the setting and thus is relevant to a much larger

class of applications.

4.4 Algorithm 2: System only partially known

In this section we present a second, more general algorithm for consensus and cooperative

control of a global goal, together with an extension (presented after some simulation results)

that allows it to work even in the case where not all nodes have access to the global value.

Also, as shown in Section 4.6 on page 75, it can be easily extended further to situations

where the communication network is not necessarily strongly connected (which allows the

algorithm to handle asynchronous communications, or to tolerate a certain amount of

communication failures).

4.4.1 Main result

The implementation of this method only requires limited knowledge of the utility functions

as well as the global function. By limited, we mean that only the growth bounds need to

be known, not the actual functions itself.

Theorem 4.2 (Algorithm 2: System only partially known)

Consider the standard situation as described in the Notation section and assume that

the utility functions f (i) and the global function g are continuous and satisfy the growth

condition. For any initial condition rk=0 = r0 ∈ R
n and any sequence of strongly connected

communication graphs, suppose that the nodes iteratively update their physical states based
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on

r
(i)
k+1 = r

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(i)
k σk (4.23)

where

σk =







g∗ − g(rk+1−M ) if k+1 is a multiple of M := n− 1

0 otherwise
(4.24)

and there exist constants ε1, ε2, µ, µ̄ > 0 such that

η
(ij)
k ≥ ε1 for j ∈ N (i)

k , and
∑

j∈N
(i)
k

η
(ij)
k ≤ 1

d̄(i)
− ε2 (4.25)

and

0 < µ ≤ µ
(i)
k ≤ µ̄ (4.26)

Then, if µ̄ > 0 is sufficiently small, the state vector rk converges asymptotically to the

vector r∗ for which f (i)(
r
(i)
∗

)

= t∗ for all i and g(r∗) = g∗.

Proof Using the growth properties of the utility functions, we have

t
(i)
k+1 − t

(i)
k = d

(i)
k

(

r
(i)
k+1 − r

(i)
k

)

where 0 < d(i) ≤ d
(i)
k ≤ d̄(i) . (4.27)

Hence, multiplication of update law (4.23) by d(i)k results in

t
(i)
k+1 = t

(i)
k + d

(i)
k

∑

j∈N
(i)
k

η
(ij)
k

(

t(j) − t(i)
)

+ d
(i)
k µ

(i)
k σk (4.28)

that is,

t
(i)
k+1 = s

(ii)
k t

(i)
k +

∑

j∈N
(i)
k

s
(ij)
k t(j) + d

(i)
k µ

(i)
k σk (4.29)

where

s
(ij)
k =



















1− d
(i)
k

∑

j∈N
(i)
k

η
(ij)
k if j = i

d
(i)
k η

(ij)
k if j ∈ N (i)

k

0 otherwise

(4.30)

Using the result in Section 4.A.1 on page 80 again, we obtain that

g∗ − g(rk+1−M) = g
(

ϕ(t∗)
)

− g
(

ϕ(tk+1−M )
)

=

n
∑

i=1

c
(i)
k

(

t∗ − t
(i)
k+1−M

)

(4.31)



64 CHAPTER 4. SWITCHING AND FEEDBACK

where

0 <
h(i)

d̄(i)
≤ c

(i)
k ≤ h̄(i)

d(i)
(4.32)

This allows us to rewrite Equation (4.28) as

tk+1 =







Sktk − µ̄Qk(tk+1−M − t∗) if k+1 is a multiple of M

Sktk otherwise
(4.33)

where, for each i = 1, . . . , n,

q
(ij)
k = µ

(i)
k d

(i)
k c

(j)
k

/

µ̄ (4.34)

Since Skt∗ = Sk1t∗ = 1t∗ = t∗, we subtract t∗ from both sides of (4.33) and define

∆tk := tk − t∗ to get the following reformulation of (4.23)

∆tk+1 =







Sk∆tk − µ̄Qk∆tk+1−M if k+1 is a multiple of M

Sk∆tk otherwise
(4.35)

We can now use this expression to show that ∆tk converges to the zero vector — which,

of course, implies that the states converge to the desired solution of the problem.

If the system starts at k = 0 then, after M iterations, Equation (4.35) results in

∆tM =

=:S̄0
︷               ︸︸               ︷

Sn−2Sn−3 . . .S0∆t0 − µ̄Qn−2∆t0 (4.36)

=
(

S̄0 − µ̄Qn−2

)

︸             ︷︷             ︸

=:Z0

∆t0 (4.37)

and after another n−1 steps

∆t2n−2 = S̄1∆tn−1 − µ̄Q2n−3∆tn−1 (4.38)

= Z1∆tn−1 (4.39)

In general, for l = 0, 1, . . . , we have

∆t(l+1)M = Zl∆tlM (4.40)

where

Zl = S̄l − µ̄Q(l+1)M−1 and S̄l = S(l+1)(n−1)−1 . . .Sl(n−1) (4.41)

The evolution of the ∆tk vectors is thus governed by the product of Zl matrices, at

which we must hence take a closer look.

To this end, we first show that the S̄l matrices are row-stochastic and positive. To

do this we first show that the Sk matrices are primitive and thus fully indecomposable
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row-stochastic matrices whose non-zero elements are uniformly bounded away from zero.

It is clear from (4.30) that Sk is a row-stochastic matrix. Now note that

s
(ii)
k = 1− d

(i)
k

∑

j∈N
(i)
k

η
(ij)
k ≥ 1− d̄(i)

∑

j∈N
(i)
k

η
(ij)
k ≥ d̄(i)ε2 > 0 (4.42)

Also, when j ∈ N (i)
k we have

s
(ij)
k = d

(i)
k η

(ij)
k ≥ d(i)ε1 ≥ dε1 > 0 (4.43)

where

d := min
i

{

d(i)
}

and d̄ := max
i

{

d̄(i)
}

(4.44)

The above positive lower bounds on the elements s(ij)k for j ∈ N (i)
k imply that the graph

corresponding to Sk is the (strongly) connected communication graph at time step k.

Since the diagonal elements of Sk are positive this implies that Sk is primitive (Horn

and Johnson, 1985, Lemma 8.5.5). Applying Theorem 2.2 of Brualdi and Liu (1991)

we can thus note that Sk is fully indecomposable for all k. However, a product of the

n−1 fully indecomposable n× n matrices yields a strictly positive matrix (Hartfiel, 2002,

Corollary 2.5) and hence the S̄l are all strictly positive (row-stochastic) matrices.

We now obtain a lower bound on the elements of every S̄l. It follows from (4.42) and

(4.43) that the non-zero elements s(ij)k of Sk must satisfy

s
(ij)
k ≥ smin where smin := min

{

dε1, d̄
(1)ε2, . . . , d̄

(n)ε2

}

(4.45)

Since each element of S̄l is the sum of a number of positive terms, where each term is the

product of at most M elements of Sk matrices, and smin ≤ 1, we must have

s̄
(ij)
k ≥ (smin)

M =: s̄min (4.46)

for all i, j and k.

Regarding the Qk matrices, it follows from (4.34) that, for all k,

0 < d

(

µ

µ̄

)

h(j)

d̄ (j)
≤ q

(ij)
k ≤ d̄

h̄(j)

d(j)
(4.47)

or

0 < qmin ≤ q
(ij)
k ≤ qmax (4.48)

where

qmin := d

(

µ

µ̄

)

min
i

{

h(i)

d̄ (i)

}

and qmax := d̄max
i

{

h̄(i)

d(i)

}

(4.49)

Thus, provided

0 < µ̄ ≤ s̄min

qmax
=

(smin)
M

qmax
(4.50)
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every Zl matrix will be non-negative; furthermore, since S̄l is row-stochastic the row sum

of every row of Zl will be bounded above by

κ := 1− µ̄qmin < 1 (4.51)

This implies that the Zl matrices are strictly row sub-stochastic and thus satisfy

‖Zl∆t‖∞ ≤ κ‖∆t‖∞ (4.52)

where ‖ · ‖∞ denotes the usual maximum-norm. It now follows from (4.40) that

‖∆t(l+1)M‖∞ ≤ κ‖∆tlM‖∞ (4.53)

for all l; hence

‖∆tlM‖ ≤ κl‖∆t0‖∞ (4.54)

Since each Sk matrix is non-negative and row-stochastic, it satisfies ‖Sk∆t‖∞ ≤ ‖∆t‖∞;

hence

‖∆tk‖∞ ≤ κl‖∆t0‖∞ when lM ≤ k ≤ (l + 1)M − 1 . (4.55)

Thus ∆tk converges to zero as k goes to infinity.

This concludes the proof of Theorem 4.2. �

Speaking loosely, an implementation of Algorithm 2 would look as follows. In each time

step, a node listens to the utility values broadcast by other nodes in the vicinity, and also

broadcasts its own. It then takes the weighted average of these values and updates its own

physical state. If additionally the time step is a multiple of n− 1, it would also listen for

the global broadcast of the global value (or the node estimates it, if this is possible in the

application), and stores this value. At the same time, it fetches the global value from n−1

iterations ago and incorporates it in the state update.

Let us now provide some simulation results of this procedure.

4.4.2 Simulations of Algorithm 2

For the simulations of the algorithm based on Theorem 4.2, which are shown in Figure 4.3

on the next page, we used piecewise linear utility functions; the global function was selected

to be of affine form, see again Section 4.A.2 and Figure 4.8(b) on page 81. The parameter

bounds were chosen within certain bounds based on which the growth-bounds as required

by the theorem were derived.

As described in Theorem 4.2, the states only incorporate the value of the global term

every n− 1 = 24 time steps. These updates are marked by the dashed, vertical lines in the

second subplot.
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Figure 4.3: Simulation of Algorithm 2.

While in each time step the averaging scheme pulls together the utility values, each

update with the global term pulls them apart again (but brings the global value closer

to its desired value). As the targeted value is approached, however, the influence of the

global term gets smaller and smaller and eventually the averaging scheme brings a “lasting”

consensus to the utility values, at a point where the global term has reached the desired

value.

4.4.3 Extension when access to the global term is limited

The previous result assumes that all nodes always have access to the global value when it

is needed. In order to make our results also relevant to applications where this assumption

may not always be practical or possible to guarantee (for instance in the presence of

communication failures), we provide the following corollary to Theorem 4.2. It relaxes

the assumptions to the more general setting where not all nodes have access to the global

term. In fact, it is sufficient for only one single node to have access to the global value.

This “special” node could for instance be placed in a strategic position where it can either

measure or determine the global value its, or receive from an external source (“bridge

node”).

To model this more general scenario, consider any time step k where the global term

g(rk+1−M ) is needed and let Ik ⊆ {1, . . . , n} be the non-empty set of nodes which incorpo-
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rate the global term in their state update at time k. Then, recalling the original algorithm

in (4.23), the more general algorithm under consideration is modelled by

r
(i)
k+1 = r

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k

(

t
(j)
k − t

(i)
k

)

+ µ
(i)
k σ

(i)
k (4.56)

where

σ
(i)
k =







g∗ − g(rk+1−M ) if k+1 is a multiple of M = n−1 and i ∈ Ik
0 otherwise

(4.57)

for all k = 0, 1, . . . . We have now the following result.

Corollary 4.1 (Restricted access to global term)

The results of Theorem 4.2 on page 62 still hold when not all (but at least one) node

includes the global term in the state update whenever it is required.

Proof The proof of the corollary is almost identical to that of Theorem 4.2; only some

small modifications are needed. Proceeding as before, the algorithm can still be described

by (4.35) where Sk is the same as before and the rows of Qk corresponding to the nodes

which update with the global term at k are the same as before; however the rows of

Qk corresponding to those nodes which cannot incorporate the global term at k are zero.

Thus Qk is not necessarily strictly positive. However, since the assumptions of the corollary

guarantee at least one positive row, the Zl matrices defined in (4.41) will still be row sub-

stochastic but not necessarily strictly row sub-stochastic (as they were under the hypotheses

of Theorem 4.2).

However, as we show now, products of the form Zl+1Zl are strictly row sub-stochastic.

To this end suppose that A,B ∈ R
n×n are positive, row-stochastic or row sub-stochastic

matrices, and at least one row-sum in B is strictly less than one. We show that then

the product AB must be strictly row sub-stochastic. Let b = B1 and w = AB1 be

the vectors containing the row-sums of B and the product AB respectively. Since B is

row-stochastic or sub-stochastic, we have b(j) ≤ 1 for all j and, by assumption, there is at

least one j0 for which b(j0) < 1. Since w = AB1 = Ab, it follows from the definition of

the matrix product that for each i = 1, . . . , n, w(i) =
∑n

j=1 a
(ij)b(j). As all elements in A

are positive,
∑n

i=1 a
(ij) ≤ 1, b(j) ≤ 1 for all j and b(j0) < 1, we must have

w(i) =

n
∑

j=1

a(ij) −
n
∑

j=1

a(ij)(1− b(j))

≤ 1− a(ij0)(1− b(j0))

< 1 (4.58)

In other words, the product AB is strictly row sub-stochastic.
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Using (4.40) we obtain that for l = 0, 2, 4, . . . ,

∆t(l+2)M =
(

Zl+1Zl
)

∆tlM (4.59)

Since the elements of each matrix Zl are uniformly bounded away from zero and each

matrix has at least one row whose sum is uniformly bounded above by a number less

than one, it follows that the matrix product Zl+1Zl is positive, strictly row sub-stochastic

with row sums uniformly bounded above by some κ < 1. As demonstrated in proof of

Theorem 4.2, one can now prove again convergence of ∆tk to zero.

This concludes the proof of Corollary 4.1. �

Simulations of this extension to Algorithm 2 where only a small number of nodes have

access to the global value are given in Section 4.6.3 on page 77.

We shall now move on to our third main result that makes even less assumptions on

the utility functions.

4.5 Algorithm 3: Dynamics and controllers

While the third proposed algorithm shares some similarities with the previous two, it differs

conceptually from them in that it is more abstract, modular and allows different nodes to

use different controllers to adjust their physical state. In fact, the combination of controller

and utility function (the “control loop”) may even have a dynamic behaviour, and can be

heterogeneous (that is, different nodes may use completely different controller types or

utility functions).

The following approach can be interpreted as “decoupling” the adjusting of the physical

states (control action) from the iterative calculation of “target utility values” that are

designed to converge to the actual solution of the problem. As is the case with the previous

two algorithms, this algorithm is also intended to be implemented in a fully decentralised

way.

Concretely, we envisage the following structure: First, in a distributed averaging step

the current utility values are averaged using some distributed averaging scheme. To this,

if k is a multiple of M = n − 1, a term µσ
(i)
k which is proportional to the error between

desired global value and actual global value is added. This yields the target utility values

t̃(i):

t̃
(i)
k+1 = a

(ii)
k t

(i)
k +

∑

j∈N
(i)
k

a
(ij)
k t

(i)
k + µσ

(i)
k (4.60)

where Ak =
(

a(ij)
)

represents the distributed averaging scheme, σ(i)
k is as defined in (4.57)

for Algorithm 2 and µ > 0 is a sufficiently small gain which is to be determined.



70 CHAPTER 4. SWITCHING AND FEEDBACK

A

Distr. averaging

t̃

t

+

+
g∗

−

Glob. function

g(r)
gg

+

σ

µ

t̃

−

+

e
Ctrls. & plants

u
C(z) P(z)

r

r(i)

t(i)
Utility fcts.

t

Calculation of t̃

k

Control of r

Figure 4.4: Illustration of the interplay of calculation of the target utility values t̃ and
the control action to adjust the physical states r accordingly.

Each node then passes its target utility value to its controller, which (over a certain

finite time span) manipulates the physical state r(i) in order to drive the node’s utility value

toward its target value. After that control action, new target values will be calculated based

on the resulting new utility values as well as the value of the global function, and so on.

This interplay of calculating the target values and then adjusting the states accordingly is

shown in Figure 4.4 above.

To leave this third approach as modular as possible, we will not specify any specific

averaging scheme or controller type. All that will be required for convergence is that

it must be possible to express the averaging scheme as multiplication by row-stochastic

matrices with non-zero entries uniformly bounded away from zero, and that the controllers

reduce the control error to within some specified range.

4.5.1 Main result

As for the previous two algorithms the questions is again: Does there exist a gain µ such

that the resulting system is stable and converges to the desired solution?

Theorem 4.3 (Algorithm 3: Dynamics and controllers)

Consider the standard situation as described in the Notation section and assume that

the utility functions f (i) and the global function g are continuous and satisfy the growth
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condition. Suppose that the communication structure of the network allows it to run a

distributed averaging scheme on the utility values. Furthermore, each node is assumed to

use a controller that is designed to adjust the node’s physical state in such a way as to

drive its utility value towards the target utility value.

If the averaging scheme can be represented in each time step as a non-negative row-

stochastic matrix Ak whose graph is strongly connected and with all non-zero elements

uniformly bounded away from zero by some γ > 0, and if the controllers guarantee

αi
(

t
(i)
k − t̃

(i)
k+1

)

≤ t
(i)
k+1 − t̃

(i)
k+1 ≤ ᾱi

(

t
(i)
k − t̃

(i)
k+1

)

(4.61)

in each control phase for some constant α(i), ᾱ(i) which satisfy

−γ/(1− γ) < α(i) ≤ ᾱ(i) < 1 (4.62)

then a positive gain µ can be found for any initial condition rk=0 = r0 so that the system

converges to tk → t∗1 and g(rk) → g∗.

Proof We will show that any algorithm under consideration here can be reduced to one

considered in Corollary 4.1. Satisfaction of the inequalities in (4.61) is equivalent to writing

t
(i)
k+1 − t̃

(i)
k+1 = β

(i)
k

(

t
(i)
k − t̃

(i)
k+1

)

with α(i) ≤ β
(i)
k ≤ ᾱ(i) (4.63)

that is,

t
(i)
k+1 = t

(i)
k +

(

1− β
(i)
k

)

(t̃
(i)
k+1 − t

(i)
k ) (4.64)

Recall that

t̃
(i)
k+1 = a

(ii)
k t

(i)
k +

∑

j∈N
(i)
k

a
(ij)
k t

(j)
k + µσ

(i)
k (4.65)

Since Ak is row-stochastic, we must have a(ii)k = 1−∑
j∈N

(i)
k

a
(ij)
k and hence

t̃
(i)
k+1 − t

(i)
k =

∑

j∈N
(i)
k

a
(ij)
k (t

(j)
k − t

(i)
k ) + µσ

(i)
k (4.66)

Recalling (4.64) now results in

t
(i)
k+1 = t

(i)
k +

∑

j∈N
(i)
k

η
(ij)
k (t

(j)
k − t

(i)
k ) + µ

(i)
k σ

(i)
k (4.67)

where

η
(ij)
k = (1− β

(i)
k )a

(ij)
k and µ

(i)
k = (1 − β

(i)
k )µ (4.68)
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Thus the algorithm is an example of those considered in considered in Corollary 4.1. We

now show that the hypotheses of Corollary 4.1 hold. First note that η(ij)k ≥ (1− ᾱ(i))γ > 0;

hence

η
(ij)
k ≥ ε1 where ε1 = γmin

i

{

(1− ᾱ(i))
}

> 0 (4.69)

We also note that

∑

j∈N
(i)
k

η
(ij)
k =

(

1− β
(i)
k

)

∑

j∈N
(i)
k

a
(ij)
k (4.70)

=
(

1− β
(i)
k

)

︸      ︷︷      ︸

≤ 1−α(i)

(

1− a
(ii)
k

)

︸       ︷︷       ︸

≤ 1−γ

(4.71)

≤ 1−
[

γ + α(i)(1− γ)
]

(4.72)

Since γ + α(i)(1− γ) > 0 for j ∈ N (i)
k , we obtain the desired result that

∑

j∈N
(i)
k

η
(ij)
k ≤ 1− ε2 where ε2 = γ + (1− γ)min

i

{

α(i)
}

> 0 (4.73)

We also obtain that

0 < µ ≤ µ
(i)
k ≤ µ̄ (4.74)

where

µ = µmin
i

{

1− ᾱ(i)
}

and µ̄ = µmax
i

{

1− α(i)
}

(4.75)

So, clearly, µ̄ can be made sufficiently small by choosing µ sufficiently small. Application

of Corollary 4.1 concludes the proof of 4.3. �

Comment It is easy to see that the lower bound in (4.62) is automatically satisfied if the

controllers are designed to produce no overshoot. By “no overshoot” we mean specifically

that during each control phase the utility values never exceed the target values, in other

words if for instance t(i)k < t̃
(i)
k+1 then the utility value during that control phase will always

be less than or equal to t̃ (i)k+1.

4.5.2 Simulations of Algorithm 3

The set-up used for our simulations of the third algorithm was the following. In a network

on n = 10 nodes the global functions were again of affine type (as for the simulations of

Algorithm 1), the utility functions, in turn, were of quadratic type (as for Algorithm 2).

The averaging scheme in this example was based on random, strongly connected row-

stochastic matrices with non-zero entries uniformly bounded below by γ = 0.02.



4.5. ALGORITHM 3: DYNAMICS AND CONTROLLERS 73

The controllers used were discrete-time implementations of PID and PI controllers,5

randomly assigned to nodes, Visioli (2006). For both controller types the parameters

were tuned as to guarantee that the resulting closed loop system would not produce any

overshoot. The gains in the PI controllers were intentionally reduced somewhat in order

to produce a slightly slower step response and increase the heterogeneity between the

controllers.
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Figure 4.5: Step-response of the closed loop control part in the simulation of Algorithm 3.

As for the plants (that is, the physical state updates) we chose first order low-pass

filters (see for instance Oppenheim et al., 1996) with randomly chosen smoothing parameter

ζ ∈ [ 0.55 , 0.85 ] to simulate a system were the physical state cannot be changed instantly.6

To illustrate the behaviour of the resulting controller-plant combination (together with

the non-linear utility functions), a step response of the closed loop system is shown in

Figure 4.5 above: The system was initialised with a physical state distribution such that

all the utility values would be equal. At kc = 10 the target utility values were then set to

t̃(i) = 4.5. While the first two subplots showing the global value and physical states are not

of particular interest here, the third subplot clearly reveals the two “groups” of nodes —

those with the slower PI controllers and those with the faster PID controllers. At kc = 30

5 For easier implementation, we used the “velocity formulation”, that is the output of each controller is

calculated recursively with: u
(i)
k

= u
(i)
k−1 + kp

(

e
(i)
k

− e
(i)
k−1

)

+ ki e
(i)
k

+ kd
(

e
(i)
k

− 2e
(i)
k−1 + e

(i)
k−2

)

. For the
PID-controllers, the parameters were set to kp = 0.10, ki = 0.09 and kd = 0.03; for the PI-controllers in
turn, kp = 0.02, ki = 0.05 and kd = 0.

6 Specifically, the new states were calculated as r
(i)
k+1 = ζ(i)u

(i)
k

+ (1 − ζ(i))r
(i)
k

.
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(that is, after 20 control iterations), the error between actual utility value and target value

relative to the initial value is less than 0.1% for each node.

While this observation does not guarantee that the control error is less than 0.1% at

the end of every control phase (since the system is not necessarily in steady-state at the

beginning of each control phase) it is still reasonable to assume that the error is reduced

sufficiently in order to guarantee the bounds (4.62).

This closed loop based on 20 control iterations was then also used in the actual simu-

lation of a system operating according to Algorithm 3, shown in Figure 4.6 below.

The dashed vertical lines in the third subplot indicate each time a new target utility

value was calculated. The global term was incorporated every (n−1) ·20 = 180 time steps.

Again, consensus is reached on the utility values and the global term reaches its target

value of g∗ = 0.44 as desired.
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Figure 4.6: Simulation of Algorithm 3.

To round off this chapter, we note that until now we have only considered networks

where the state updates are all performed in a synchronised fashion. That is, for a given

time step k, the nodes first exchanged all the relevant state information with each other,

and then, jointly, performed the update based on the state information at time k to reach

the new state value at k + 1. However, this perfectly synchronised way of performing the

updates may not always be easy to implement, or even guarantee at all. The next and

final section of results in this chapter is to remedy that situation.
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4.6 Extension to asynchronous state updates

We now extend our above results to asynchronous communications and state updates by

no longer requiring the communication graphs representing the information flow in the

network to be strongly connected in each time step (as above), but rather only jointly

strongly connected over time, with a fixed and constant time horizon m ≥ 1. In other

words, it is only required that the union of any m consecutive graphs taken from that

sequence must yield a strongly connected graph. That way, the communication between

nodes can be “staggered out”, with nodes updating their state right after they have received

information from a neighbour, rather than having to wait until they have received the

states from all their neighbours and until all the other nodes are also “ready” to perform

the (synchronised) update.

In each of our three results above, the update equations (or their transformed versions

in the proofs) contain a consensus term based on row-stochastic and primitive matrices.

In case of asynchronous updates, these matrices would also be row-stochastic, but not

necessarily primitive. Rather, they would contain a number of rows that only have a

1 in the main diagonal entry and 0 everywhere else (corresponding to nodes that have

not received any state information from any other nodes). The key idea of the following

extension is that non-zero elements in these matrices do not “get lost” (thanks to the

positive main diagonals); only new non-zero entries can appear. Hence, intuitively, all one

needs to do is “wait long enough” until eventually these matrices become primitive. This

is laid out in detail in the following sub-sections, with which we shall close this chapter.

4.6.1 Asynchronous version of Algorithm 1

Corollary 4.2 (Algorithm 1, asynchronous updates)

The results of Theorem 4.1 on page 59 still hold if the sequence of communication

graphs is jointly strongly connected over some finite and constant time horizon m ≥ 1.

Proof Recall that Algorithm 1 given by Theorem 4.1 can be written as

tk+1 = Sktk + µ
[

g∗ − g(rk)
]

1 (4.76)

The proof of that theorem relied on the convergence result given by Lemma 4.1, the proof

of which in turn required a sequence of primitive matrices so that Theorem 1.9 of Hartfiel

(1998) could be used.

Now, in the case of only jointly strongly connected graphs, primitivity of individual

Sk matrix cannot be guaranteed. Rather, we need to interpret the product of the Sk

matrices as blocks of m matrices multiplied together, since only these “sub-products” yield

primitive, row-stochastic matrices (thanks to the main diagonal entries in each matrix Sk

being strictly positive). Additionally, since there are only finitely many possible graph
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topologies on n nodes, there can only be finitely many different m-blocks of Sk matrices,

which implies a uniform, non-zero lower bound on the non-zero matrix elements in all

these m-blocks. Both properties make the use of Lemma 4.1 possible again to show that,

ultimately, system (4.16) converges to a scalar system. The rest of the proof then follows

again the lines of the proof of Theorem 4.1. �

4.6.2 Asynchronous versions of Algorithms 2 and 3

Corollary 4.3 (Algorithms 2 and 3, asynchronous updates)

The results of Theorem 4.2 and Corollary 4.1 still hold if the sequence of communication

graphs is jointly strongly connected over some finite and constant time horizon m ≥ 1,

provided M = n− 1 is replaced with M = m(n− 1).

Proof Only a small modification to the proof of Theorem 4.2 and Corollary 4.1 is needed

to show the above result. For k̃ = 0, 1, . . . , let

S̃k̃ = S(m+1)k̃−1 . . .Sk̃m (4.77)

Since all the Sk matrices are non-negative row-stochastic matrices with strictly positive

diagonal elements, each matrix S̃k̃ is row-stochastic, has positive diagonal elements and

its graph corresponds to the collection of communication graphs from time step k̃m to

(m+1)k̃ − 1. As any collection of m consecutive graphs is assumed to be jointly strongly

connected, it follows that S̃k̃ is irreducible, and since it has positive diagonal elements, it is

primitive and thus fully indecomposable. The algorithm under consideration still satisfies

(4.40) where

S̄l = S(l+1)M−1 . . .SlM ; (4.78)

However, here M = m(n−1). Thus,

S̄l = S̃(l+1)(n−1)−1 . . . S̃l(n−1) (4.79)

Having established the above properties of the S̃k̃ matrices, the remainder of the proof

follows Theorem 4.2 or Corollary 4.1. �

Comment The generalised forms of Algorithm 2 given by Corollaries 4.1 and 4.3 are

designed to tolerate certain communication problems. In the case of Corollary 4.1 this

robustness is achieved at the cost of very small gains µ(i) on the global term; see (4.50).

Observing (4.51) and (4.55) it is not difficult to see that smaller gains produce slower

convergence.

However, various simulations using sufficiently “general” graphs (rather than patho-

logical cases like the directed n-cycle) have shown that those gains can, in fact, be set



4.6. EXTENSION TO ASYNCHRONOUS STATE UPDATES 77

significantly larger than required by the theoretical results above, which suggests that

these bounds are loose and may be improved on.

Our third algorithm can also be modified to accommodate for asynchronous communi-

cations in the same manner as described above; simply let M = m(n− 1).

4.6.3 Simulations of the extensions of Algorithm 2

The communication graphs in the previous two simulations were, by design, all strongly

connected. For the simulations of the modification of the second algorithm as presented

in the corollary, we also used state-dependant disc graphs, but randomly removed, in each

time step, a number of edges in order to deliberately disconnect the graphs. The amount

of edges removed (in average 75% of the edges), however, was experimentally chosen in

order to guarantee (almost always) that every set of m = 3 consecutive graphs would form

a jointly connected graph, as required by the corollary. Thus, the updates using the global

term were performed only every 3(n− 1) = 72 time steps.
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Figure 4.7: Simulation of Algorithm 2 (corollary).

Additionally, we also randomly prevented nodes from accessing the value of the global

term (in average, only 25% of the nodes were allowed to use the global term during at each

global term update step).

The results from the simulation under these harder conditions are shown in Figure 4.7

above and closely resemble that of the previous case. Due to the less frequent updates,
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however, convergence to the desired global value takes much longer but is achieved nonethe-

less.

4.7 Conclusion

Consensus problems have attracted a large amount of attention in recent years. The

present chapter’s contributions in that area are three fully decentralised cooperative control

algorithms that not only allow a network to reach consensus either directly or indirectly

(that is, with or without utility functions involved), but also enable the nodes in the

network to cooperate and achieve a global, common goal that depends on the aggregate

behaviour of the network.

Our first result concerned the well-controlled case where the utility functions and their

inverses are perfectly known a priori. The nodes then use the inverse utility functions to

calculate the state updates.

The second contribution consisted of an algorithm that requires less precise knowledge

of the problem setting and involved functions. All that needed to be known were upper

and lower bounds on the growth rates of the global- and utility functions, but not the

functions themselves. Also, through Corollary 4.1, we allowed for an even broader class of

applications where not all nodes need to have access to the global value.

Our third piece of work took a somewhat different approach. The idea consisted of

decoupling the adjusting of the physical state from the iterative calculation of desired

values for the utility values. This enabled us to cater for networks where the state cannot

change instantly, where only filtered versions of the state are available, but, probably most

importantly, where different nodes may have completely different dynamics and controllers.

The key property required for convergence in these networks was that the controllers must

be designed so that they drive the physical states / utility values (in finite time) to within

a certain range of the calculated target utility values.

Each of the three algorithms was accompanied by simulation results that demonstrated

the effectiveness of our approach, and they were then extended to the case of asynchronous

communications and state updates.

Applications for each of the three algorithms can be found for instance in the computer

communication networks space (Algorithm 1, Stanojević and Shorten, 2008), emissions

control of vehicles (Algorithm 2, see Chapter 6) or group coordination of mobile agents

(Algorithm 3, Olfati-Saber, 2006).

Limitations

While the theoretical contributions of this chapter may well present a new paradigm for

cooperative control, there are a number of limitations that should be resolved especially

for practical applications. As we mentioned before, the gains required in our proofs are
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much too small for any practical purpose. Since they are of very conservative nature,

it should certainly be possible to improve on them. However, this may involve different

mathematical approaches such as directly treating the problem as a switched system and

subsequently searching for (common) Lyapunov functions.

Before moving on, we recall again that our general assumption was that all nodes (or

at least one node) have access to the global term — typically provided to the network

through some external entity that is able to determine, measure or estimate this value.

However, there are situations where no such external entity may be available, feasible or

even desirable (as it would constitute a single point of failure). To avoid such problems, the

nodes would have to estimate the global property themselves. This would typically have

to be done conjointly and in a distributed way in order to be more robust and, potentially,

to also average out localised phenomena (it would, for instance, not be very accurate to

measure the CO2 levels in only a single location in the city — if a strongly polluting lorry

had its engine running next to the CO2 sensor then the measurement would clearly be

biased and not representative for the city as a whole).

The next chapter will focus on one such application where it is actually possible for the

nodes to estimate the global property one their own. In some sense, the approach we shall

present next may be seen as a special instance of Algorithm 1 of this chapter.

∗ ∗ ∗
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4.A Chapter appendix

4.A.1 An expression for the global term

This proof has been moved here in order to improve the flow of the original chapter.

Given global and utility functions which satisfy the growth conditions, we show here

that, for any t, t∗ ∈ R
n,

g
(

ϕ(t∗)
)

− g
(

ϕ(t)
)

=

n
∑

i=1

c(i)
(

t
(i)
∗ − t(i)

)

where
h (i)

d̄ (i)
≤ c(i) ≤ h̄ (i)

d(i)
(4.80)

Letting r = ϕ(t) and r∗ = ϕ(t∗), we start by showing that

∆g := g
(

ϕ(t∗)
)

− g
(

ϕ(t)
)

= g(r∗)− g(r) (4.81)

can be expressed as

∆g =

n
∑

i=1

c̃(i)∆r(i) where h(i) ≤ c̃(i) ≤ h̄(i) (4.82)

and ∆r(i) = r
(i)
∗ −r(i). The change ∆g corresponds to the change of the value of the global

function when moving from r to r∗. Now, instead of going “directly” from r to r∗ we can

also reach r∗ by only changing one coordinate at a time, that is we basically break up

the “cumulative change” ∆g into the changes caused by moving along each coordinate. To

express this mathematically, we recursively define the vectors r0, . . . , rn by

r0 = r and ri = ri−1 +∆r(i)ei for i = 1, . . . n . (4.83)

Clearly, the ri vectors correspond to the “corner points” of the “path” if one starts at r

and then moves by ∆r(1) along the first dimension, then by ∆r(2) along the second and so

on. By construction, in the end rn = r∗.

As a consequence of the growth properties of g, we have

g(ri)− g(ri−1) = g(ri−1 +∆r(i)ei)− g(ri−1) = c̃(i)∆r(i) (4.84)

where h(i) ≤ c̃(i) ≤ h̄(i), and since

∆g = g(rn)− g(r0) =

n
∑

i=1

[

g(ri)−g(ri−1)
]

(4.85)

the result (4.82) now follows.

Next, we replace the difference r∗ − r by the corresponding difference t∗ − t. As a

consequence of the growth properties of the utility functions f (i), we have

f (i)(r
(i)
∗ )− f (i)(r(i)) = d(i)(r

(i)
∗ − r(i)) = d(i)∆r(i) (4.86)
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where 0 < d(i) ≤ d(i) ≤ d̄ (i). But since t(i) = f (i)(r(i)) and t(i)∗ = f (i)(r
(i)
∗ ) we see that

t
(i)
∗ − t(i) = d(i)∆r(i) (4.87)

Hence,

∆r(i) =
t
(i)
∗ − t(i)

d(i)
where 0 < d(i) ≤ d(i) ≤ d̄ (i) (4.88)

Combining (4.82) and (4.88) now yields the desired result (4.80).

4.A.2 Global- and utility functions used in our simulations

For some simulations, the utility functions were chosen to be of quadratic form on the

interval [ 0 , 1.5 ], and linear outside this range. Specifically, the functions were of the form

t(i) =



















α
(i)
1 (r(i))2 + α

(i)
2 r(i) + α

(i)
3 if 0 ≤ r(i) ≤ 1.5

β
(i)
1 r(i) + β

(i)
2 if r(i) < 0

β
(i)
3 r(i) + β

(i)
4 otherwise

(4.89)

where the coefficients α(i)
1 , α

(i)
2 , α

(i)
3 were chosen within appropriate bounds to guarantee

invertibility on the interval [ 0 , 1.5 ]. The coefficients β(i)
1 , . . . , β

(i)
4 where also chosen ran-

domly, but in such a way as to guarantee that the overall function would be continuous

(i. e. that the linear segments join up with the quadratic part). A set of 25 randomly

generated functions of this type are shown in Figure 4.8(a).

t

r
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(a) Quadratic type

t

r
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25

30

(b) Piecewise linear type

Figure 4.8: Illustrations of the utility functions t(i) = f (i)(r(i)) used in the simulations
of Algorithms 1 and 2.

In other simulations we used piecewise linear utility functions, shown in Figure 4.8(b),

also based on randomised coefficients.

The global functions used were also either of quadratic form

g(r) = d+

n
∑

i=1

q(i)
(

r(i)
)

(4.90)
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where the q(i) were of a similar type as (4.89), or of affine form

g(r) = d+

n
∑

i=1

c(i)r(i) (4.91)

where the parameters c(i) > 0 and d > 0 were also chose at random.

All random parameters were chosen within certain bounds from which the required

growth conditions for the theorems were then easily derived.



C H A P T E R 5

Switching, Feedback and Estimation

In this chapter, we add an estimation component to the general cooperative con-
trol problem, proposing a decentralised control scheme for regulating the topology
of a wireless sensor network. First, an algorithm is developed that approximates
the connectivity level as measured by the second largest eigenvalue of a stochastic
normalisation of the system’s adjacency matrix. These estimates are then used
to inform a cooperative control algorithm that iteratively regulates the network’s
connectivity to some desired level.

Chapter contents

5.1 Introduction

5.2 Preliminaries

5.3 Decentralised estimation of the second eigenvalue

5.4 Decentralised connectivity control

5.5 Simulation results

5.6 Conclusion

5.1 Introduction

The previous chapter presented a number of algorithms designed to solve a regulation

problem involving both global and local constraints, operating in a variety of different

settings with different assumptions. However, the common assumption throughout was

that the global term is “provided” to one or more nodes in the networks so that they could

integrate it into the control scheme. In contrast to this work, the present chapter now

investigates an example where this assumption cannot be made. The global term thus

needs to be estimated by the network itself. The following presents joint work with Dr. R.

Stanojević, Prof. M. Corless and Prof. R. Shorten and has been published in Knorn et al.

(2009c,d).

Recent years have witnessed a growing interest in the control community in problems

that arise when dynamic systems evolve over graphs. But while the most high profile of

these applications are clearly in consensus applications such as formation flying, synchro-

nisation problems and sensor networks, there are also many other applications where the

83
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manner in which the network topologies change affects the performance of algorithms that

evolve over these graphs. In such applications, an essential requirement is that the topol-

ogy of the graph be such that some basic properties required to support communication

and control are satisfied, the most basic of these being that the network be connected.

Considerations of this kind have given rise to the emerging field of network topology con-

trol.

The work in this chapter is inspired by the third motivating example we gave in Sec-

tion 1.2.3 on page 4: A wireless sensor network that is based on stationary nodes (i. e.

nodes that do not change their geographical location) that are able to adjust the transmit

power in their radios and hence control the area over which they can broadcast informa-

tion.1 This means that by changing their broadcast radius (that is the distance from the

transmitter up to which information can be reliably received) the nodes can directly in-

fluence the topology of the resulting communication network. Using the terminology of

the previous chapter, each node’s broadcast radius would be its physical state. No utility

values will be considered in the present context, in other words the utility function is the

identity function. The global quantity of interest will be the communication network’s

level of connectedness or an algebraic proxy thereof (this will be defined more precisely in

Section 5.2).

Recall that, roughly speaking, a graph is (strongly) connected in the classic graph-

theoretic sense if there exists at least one path from any one node in the network to any

other. As we saw in the previous chapter, graph connectivity is an essential component in

situations where a group of networked nodes must work together, in a decentralised man-

ner, to achieve a common task. This issue of graph connectivity is therefore very important

and has achieved much attention in various contexts. It appears that this work has followed

three lines of enquiry. In the graph theory literature, attempts have been made to identify

and grow graphs with pre-specified connectivity properties; see Fallat and Kirkland (1998);

Ghosh and Boyd (2006); Boyd et al. (2004) and the references therein for an overview of

this work. In the computer science and networking communities several attempts have

also been made to identify local (node based) constraints that guarantee certain forms of

graph connectivity. For example, the sector rule proposed in Wattenhofer et al. (2001)

is one such rule that gives rise to certain types of connected graphs. Recently, work in

this direction has been extended to reflect not only topological considerations, but also the

effect of physical constraints such as power and interference, in achieving these objectives.

Finally, a third strand of work has recently emerged in the control and robotics community.

Roughly speaking, this work involved using feedback principles to achieve graphs with a

desired topology. Examples of this work can be found in Ramanathan and Rosales-Hain

(2000); Ji and Egerstedt (2005); Gennaro and Jadbabaie (2006); Cabrera et al. (2007);

Dimarogonas and Kyriakopoulos (2008) and the references therein. In particular, Gennaro

1 Such networks are widely used in many engineering problems, see for instance Akyıldız et al. (2002)
for a very detailed survey of the area of wireless sensor networks.
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and Jadbabaie have proposed an interesting approach to distributed control of the sec-

ond smallest eigenvalue of the communication graph’s Laplacian, Gennaro and Jadbabaie

(2006). Those ideas were further developed in Yang et al. (2008). In this line of work,

however, nodes have a fixed communication radius and change their positions relative to

each other in order to achieve a desired connectivity level, with the consequence that the

communication graphs are always undirected graphs.

Contributions

Clearly, regulation of the connectivity of a given graph is difficult because graph con-

nectivity is a global property, whereas typically, nodes (or agents) can only act locally.

Thus, any algorithm for maintaining graph connectivity must be decentralised if it is to

be of any practical value. Our objective here is to propose one such algorithm; namely,

a decentralised algorithm that is simple to implement yet efficiently regulates the connec-

tivity level of a given graph to some pre-specified value. To that end we first develop and

prove convergence of a decentralised estimation scheme whereby each node can estimate

the level of graph connectivity (as a proxy for the level of connectivity we will use the

second largest eigenvalue of a stochastic normalisation of the graph’s adjacency matrix).

We then present a control strategy to regulate the graph connectivity about a specified

set-point. This approach may be seen as an adaptation of Algorithm 1 described in the

previous chapter, but in contrast to our earlier work, the global function encountered here

(which now describes the dependency of the eigenvalue on each node’s broadcast radius)

is neither continuous nor strictly monotone. Simulation results are also given to illustrate

the theoretical contributions, and we present examples to show that our control framework

is sufficiently general to allow other constraints such as local power, interference, or node

density to be part of a connectivity/interference trade-off as well.

The work carried out in this chapter differs from that in the literature in a number

of aspects. Firstly, some of the previous results are of a probabilistic nature, i.e. they

draw statistical conclusions of the type “in average, roughly every third graph of this kind

should be connected”. However, the application scenario that we have in mind consists of

a concrete situation where a number of sensors are placed randomly in space (for example,

a set of nodes dropped over a lake, each node communicating only with a subset of its

neighbours). In this case, drawing probabilistic conclusions is of little help, as we would

like to find results for particular instances of the problem. We are also interested in

situations where information mixes quickly across the graph, which means that we must

specifically account for the speed at which information passing takes place — and not just

that the graph is connected (in the classic graph-theoretic sense). Finally, as before, we

wish to develop algorithms that can be used irrespective of graph type where again we

wish to break free of the assumption that the underlying graph structure is symmetric.

This again delineates the work presented here from much of the recent results in the area.
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Finally, we argue that our algorithms are very simple to implement and require minimal

computational requirements, and give rise to graph growing techniques with truly scale-free

properties.

Structure

In the next section we introduce the basic idea behind our approach and describe the

general set-up and notation. We will then present our decentralised estimation scheme that

iteratively approximates the second largest eigenvalue. We discuss in Section 5.4 how this

value could be used to control the networks connectivity by proposing a simple controller

based on these estimates, and determine the conditions for the stability of the decentralised

closed loop system. Results from simulations are then presented in Section 5.5. Finally

conclusions and future directions are given in the last section.

5.2 Preliminaries

5.2.1 Basic idea

Our basic idea for connectivity estimation is based on the observation that dynamic systems

or algorithms evolving on graphs often reveal topological properties about the graph itself.

One such algorithm is the distributed averaging or consensus algorithm, which is strongly

related to the theory of Markov chains and to (non)homogeneous matrix products. While

the primary focus of the work reported here is not on the dynamics of consensus algorithms,

it is important to note here that the second eigenvalue of the averaging matrix (see notation

section below) determines the rate at which the nodes in the network achieve consensus.

Roughly speaking, as a graph becomes less connected this second eigenvalue becomes closer

to unity, when rate of convergence is used as a measure of connectivity. Further, as we

shall see, a simple algorithm can be used, together with elementary techniques from system

identification, to locally estimate this eigenvalue in a decentralised manner.

Let us briefly illustrate these basic points in Figure 5.1 on the next page. Here, we show

the average value of the second largest eigenvalue in magnitude of the averaging matrix of

random (regular) graphs.2 The averaging matrix was constructed directly from a stochastic

normalisation of the adjacency matrix of the underlying graph. In the plot, the value of

the second largest eigenvalue drops monotonically with increasing graph regularity (fixed

number of neighbours per node). Although this is a very special type of graph, it shows

that a single value can give an indication of the connectivity situation of a graph.

Comment Classically, the second smallest eigenvalue of the Laplacian (or transition

Laplacian) matrix of a graph has been used as an algebraic measure for connectivity,

Fiedler (1973); Chung (1997). However, usually Laplacians are only defined for undirected

2 A d-regular graph is a graph where each node has exactly d neighbours (here chosen at random).
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Figure 5.1: Average of the magnitude of the second largest eigenvalue of the averaging
matrix of d-regular random graphs with 200 nodes.

graphs, and this is an unnatural restriction that we would like to eliminate. In contrast,

the second largest eigenvalue (in magnitude) of an averaging matrix is also an excellent

candidate to indicate the degree of connectivity of an entire graph (independent of the

fact whether the underlying graph is directed or not) with the added benefit of being

easily approximated locally in each node using computationally inexpensive estimation

techniques as shown below.

Knowledge of global information such as level of connectivity, based on purely local

information, offers a wide range of local node actions with the objective of connectivity

maintenance, one of which is will be presented in this chapter. For example, in the context

of wireless networks, one possible action is for nodes to adjust the power of their radio

transmissions, based on the local estimate of connectivity. Concretely, this could mean to

reduce the communication radius if the connectivity is estimated to be larger than required

(as decreasing the radius will lead to reducing the number of neighbours, hence reducing

connectivity). A pseudo-protocol for such a strategy is given in Figure 5.2 on the following

page.

That such a strategy is well posed is evident and follows from the basic observation that

if all nodes increase their communication radii sufficiently, then the graph will eventually

become more densely connected. The issues that make the realisation of such strate-

gies challenging in a practical environment concern decentralised estimation of the second

largest eigenvalue of the averaging matrix, and proving that the resulting closed loop strat-

egy is robustly stable. Resolving these issues will be the main concern of this chapter.
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1: Deploy pre-configured nodes and initialise network by
choosing random initial communication radii such that
network is connected.

2: By running a consensus algorithm on the network, each
node estimates the second largest eigenvalue of the aver-
aging matrix based on the convergence of its own state.

3: For each node, if the estimated eigenvalue is smaller than
some desired value, decrease the broadcast radius; if the
estimate is larger, increase the radius.

4: Go to 2.

Figure 5.2: Pseudo-protocol for the overall scheme.

5.2.2 General setting

Building on Section 4.2.2, we assume that a consensus / averaging algorithm evolves on the

graph G . Formally, associate to each node i = 1, . . . , n in the network a state x(i) ∈ R. The

state of node i at time k is denoted x(i)k , and the network’s state (i. e. the states of all the

nodes combined) is the column vector xk =
(

x
(1)
k , . . . , x

(n)
k

)

T. For each node i = 1, . . . , n,

a distributed averaging scheme can then be written as

x
(i)
k+1 =

n
∑

j=1

p(ij)x
(j)
k where

n
∑

j=1

p(ij) = 1 and







p(ij) > 0 if j ∈ N (i)

0 otherwise
(5.1)

for k = 0, 1, 2, . . . with some initial condition x(i)k=0 = x
(i)
0 . It is easy to see that this relation

can be written for the overall network as

xk+1 = Pxk where xk=0 = x0 (5.2)

and where the stochastic, non-negative P =
(

p(ij)
)

is called the averaging matrix.

Let λ(1), . . . , λ(n) be the eigenvalues of P and assume that they are ordered so that

|λ(i)| ≥
∣

∣λ(j)
∣

∣ when i ≤ j. To make matters more tractable we shall assume in the following

that P is always diagonalisable.3 Further, by making this assumption we have that P

has n linearly independent eigenvectors, ν(1), . . . ,ν(n) corresponding to the eigenvalues

λ(1), . . . , λ(n) (with a slight abuse of our usual notation, ν(i) and λ(i) denotes the ith

eigenvector-eigenvalue pair). Thus these eigenvectors form a basis for Rn and every initial

state x0 can be uniquely expressed as

x0 = c(1)ν(1) + c(2)ν(2) + · · ·+ c(n)ν(n) (5.3)

3 Since the set of diagonalisable matrices is dense in the set of stochastic matrices, this assumption is
an entirely reasonable one to make.



5.3. DECENTRALISED ESTIMATION OF THE SECOND EIGENVALUE 89

for some scalars c(1), . . . , c(n). Since Pν(i) = λ(i)ν(i),

xk = P kx0 = P k
(

c(1)ν(1) + c(2)ν(2) + · · ·+ c(n)ν(n)
)

(5.4)

= c(1)
(

λ(1)
)k
ν(1) + c(2)

(

λ(2)
)k
ν(2) + · · ·+ c(n)

(

λ(n)
)k
ν(n) (5.5)

If the underlying graph is strongly connected, and since P has positive entries along the

main diagonal, it follows that P is primitive, Horn and Johnson (1985). Thus, the Perron

eigenvalue λ(1) = 1 is simple and all other eigenvalues are smaller in magnitude. Also,

ν(1) = 1 as P is row-stochastic, hence

xk = c(1)1+
(

λ(2)
)k





n
∑

j=2

c(j)
(

λ(j)

λ(2)

)k

ν(j)



 (5.6)

and

∥

∥xk − c(1)1
∥

∥ ≤
∣

∣λ(2)
∣

∣

k
β(x0) with β(x0) =

n
∑

j=2

∣

∣c(j)
∣

∣ ·
∥

∥ν(j)
∥

∥ (5.7)

where ‖ · ‖ denotes some norm.

In this case, xk converges exponentially to c(1)1 and the rate of convergence is bounded

by
∣

∣λ(2)
∣

∣. In other words, the rate of convergence of the distributed averaging can be

measured by the magnitude of λ(2). Together with the intuition that the more the graph

is connected the faster the averaging should converge, we can now see that
∣

∣λ(2)
∣

∣ may very

well be used as a proxy for the level of connectivity of the graph and the rate at which

information can flow through it.

5.3 Decentralised estimation of the second eigenvalue

We now provide a simple method by which all nodes in the network may estimate λ(2)

based only on local measurements.

Our basic idea is as follows. Once we know whether λ(2) is real or complex (non-real),

different methods can be used to accurately estimate its magnitude based only on local

measurements. For example, when λ(2) is real then the direct estimation method described

by Proposition 5.1 will yield a correct estimate of
∣

∣λ(2)
∣

∣. Also, the dynamic system that

governs the evolution of z(i)k := x
(i)
k − x

(i)
k−1 can be modelled asymptotically as a first order

linear system (with a noise term that decays to zero) if λ(2) is real valued. The parameters

of that linear system can then be identified through an estimation method such as the

classic recursive least squares algorithm (RLS, see for instance Haykin, 2002) providing

another estimate of the absolute value of λ(2). When λ(2) is complex (non-real), a third

estimation method, based on Proposition 5.2 below can be applied. Thus with appropriate

numerical conditioning of the values of z(i)k , estimation of λ(2) can be carried out in a

straightforward manner.
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1: z
(i)
k

= x
(i)
k

− x
(i)
k−1

2: A = Estimate_real(z(i)())
3: B = RLS_real(z(i)())
4: C = Estimate_complex(z(i)())
5: if |A− B| < ǫ
6: return A

7: else

8: return C

9: end if

Figure 5.3: Pseudocode for the overall estimation scheme of
∣

∣λ(2)
∣

∣.

However, it is usually not clear a priori whether the averaging matrix P has a real or

complex (non-real) second eigenvalue (the exception being undirected graphs where λ(2)

is always real valued). Thus we must develop a method for determining whether or not

this eigenvalue is real or complex (non-real). To that end, we use the three estimators

presented above and run them in parallel. Specifically, we first obtain estimates for λ(2)

from the estimator based on Proposition 5.1 as well as the recursive least squares scheme,

both of which are guaranteed to work only when λ(2) is real. If both estimates of λ(2)

match up to a certain degree (that is, the absolute difference between the two values is

less than some threshold ǫ), we assume that λ2 is real and use these estimates. However,

if the estimates do not match sufficiently, we consider λ(2) to be complex (non-real) and

use the estimate obtained based on the Proposition 5.2 (which is guaranteed to converge

to the correct value in that case). The pseudocode for this strategy is given in Figure 5.3.

In the rest of the section we provide the details explaining what each of the functions

Estimate_real(), RLS_real() and Estimate_complex() do. All three functions require

the distributed averaging algorithm to be run on the network, and each node is assumed

to be able to store a small number of its own past states.

5.3.1 Estimate_real()

The following Proposition provides a method of estimating the value of the second largest

eigenvalue of the averaging matrix provided the eigenvalue is real valued.

Proposition 5.1 (Decentralised estimation of real valued λ(2))

Let G = (V ,A) be a strongly connected network with averaging matrix P such that its

second largest eigenvalue in magnitude λ(2) is real and satisfies
∣

∣λ(2)
∣

∣ >
∣

∣λ(j)
∣

∣ for all j > 2.

Consider any node i and let z(i)k := x
(i)
k −x(i)k−1 where xk is determined by the distributed

averaging algorithm (5.2) running on the network with a sufficiently general initial condi-



5.3. DECENTRALISED ESTIMATION OF THE SECOND EIGENVALUE 91

tion. Consider any positive integer m and for k ≥ m+ 1, let

λ̃
(i,2)
k =

∣

∣

∣

∣

∣

z
(i)
k

z
(i)
k−m

∣

∣

∣

∣

∣

1/m

(5.8)

be node i’s estimate of
∣

∣λ(2)
∣

∣. Then limk→∞ λ̃
(i,2)
k =

∣

∣λ(2)
∣

∣.

Proof Recall from (5.6) that for any node i:

x
(i)
k = c(1) +

(

λ(2)
)k





n
∑

j=2

c(j)
(

λ(j)

λ(2)

)k

ν(i,j)





︸                             ︷︷                             ︸

=:ψ
(i)
k

(5.9)

where ν(i,j) denotes the ith element of the jth eigenvector of P . We then have for k > m+1

z
(i)
k

z
(i)
k−m

=
x
(i)
k − x

(i)
k−1

x
(i)
k−m − x

(i)
k−m−1

=

(

λ(2)
)k
ψ
(i)
k −

(

λ(2)
)k−1

ψ
(i)
k−1

(

λ(2)
)k−m

ψ
(i)
k−m −

(

λ(2)
)k−m−1

ψ
(i)
k−m−1

=
(

λ(2)
)m ψ

(i)
k −

(

λ(2)
)−1

ψ
(i)
k−1

ψ
(i)
k−m −

(

λ(2)
)−1

ψ
(i)
k−m−1

︸                                 ︷︷                                 ︸

=:w
(i)
k,m

(5.10)

and taking the mth root of the absolute values of both sides

∣

∣

∣

∣

∣

z
(i)
k

z
(i)
k−m

∣

∣

∣

∣

∣

1/m

︸        ︷︷        ︸

λ̃
(i,2)
k

=
∣

∣λ(2)
∣

∣ ·
∣

∣w
(i)
k,m

∣

∣

1/m
(5.11)

From the last equation we can see that the estimate λ̃(i,2)k approaches the true absolute

value of the second largest eigenvalue if and only if the
∣

∣w
(i)
k,m

∣

∣→ 1, as k grows. Since

ψ
(i)
k = c(2)ν(i,2) +

n
∑

j=3

c(j)
(

λ(j)

λ(2)

)k

ν(i,j) (5.12)

it will converge to c(2)ν(i,2) as k grows, as by assumption
∣

∣

λ(j)

λ(2)

∣

∣

k
< 1 for j = 3, . . . , n.

For a general initial condition c(2)ν(i,2) is non-zero and, using (5.10), we now have that
∣

∣w
(i)
k,m

∣

∣→ 1 and thus λ̃(i,2)k →
∣

∣λ(2)
∣

∣ as k → ∞. �

In summary, if the prerequisites are met, for k ≥ m+1, each node can iteratively refine

its estimate of
∣

∣λ(2)
∣

∣ with (5.8) so that it converges to the true value of |λ(2)| as k grows.

Comment It also follows from the proof that larger the gap between
∣

∣λ(2)
∣

∣ and |λ(3)|
the faster the estimates λ̃(i,2)k will converge to the true value of

∣

∣λ(2)
∣

∣.
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5.3.2 RLS_real()

When λ(2) is real we can also use a recursive least squares algorithm for estimating λ(2).

It can be seen from (5.10) that by letting m = 1 we have for k = 1, 2, . . . the following

relationship (asymptotically)

|z(i)k+1| ≃
∣

∣λ(2)
∣

∣ ·
∣

∣z
(i)
k

∣

∣ (5.13)

Applying a suitably parametrised recursive least squares algorithm, see for instance Åström

and Wittenmark (1997), should then also yield good estimates for
∣

∣λ(2)
∣

∣.

5.3.3 Estimate_complex()

The next proposition provides a method for estimating the magnitude of a complex (non-

real) valued λ(2). When λ(2) is complex (non-real), its complex conjugate λ̄(2) is also

an eigenvalue of P with the same magnitude. If we assume that
∣

∣λ(2)
∣

∣ >
∣

∣λ(j)
∣

∣ for all

j > 2 then, recalling (5.6), it is straightforward to show that, for each node i, the variable

z
(i)
k = x

(i)
k − x

(i)
k−1 can be written as

z
(i)
k = c(i)

(

λ(2)
)k

+ c̄ (i)(λ̄(2))k +
∣

∣λ(2)
∣

∣

k
O

(i)
k (5.14)

where O(i)
k → 0 as k → ∞ and c(i), c̄ (i) 6= 0 for a sufficiently general initial condition of

the averaging algorithm.

Proposition 5.2 (Decentralised estimation of the magnitude of a complex (non-real) λ(2))

Let G = (V ,A) be a strongly connected network with averaging matrix P such that its

second largest eigenvalue in magnitude λ(2) is complex with non-zero imaginary part and
∣

∣λ(2)
∣

∣ = |λ̄(2)| >
∣

∣λ(j)
∣

∣ for j > 2.

Consider any node i and let

ζ
(i)
k := z

(i)
k z

(i)
k−2 −

(

z
(i)
k−1

)2
(5.15)

where z(i)k = x
(i)
k − x

(i)
k−1 and xk is determined by the distributed averaging algorithm (5.2)

running on the network with a sufficiently general initial condition. Consider any positive

integer m and for k ≥ m+ 3, let

λ̃
(i,2)
k =

∣

∣

∣

∣

∣

ζ
(i)
k

ζ
(i)
k−m

∣

∣

∣

∣

∣

1
2m

(5.16)

be node i’s estimate of
∣

∣λ(2)
∣

∣. Then limk→∞ λ̃
(i,2)
k =

∣

∣λ(2)
∣

∣.
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Proof For any node i, substituting expression (5.14) into (5.15), and dropping the super-

scripts “(i)” and “(2)” to increase legibility, yields

ζk =
[

cλk + c̄λ̄k + |λ|kOk
][

cλk−2 + c̄λ̄k−2 + |λ|k−2O(k−2)
]

. . .

. . . −
[

cλk−1 + c̄λ̄k−1 + |λ|k−1Ok−1
]2

= cc̄
[

λkλ̄k−2 + λ̄kλk−2 − 2λk−1λ̄k−1
]

+ |λ|(2k−4)Õk

= |c|2|λ|(2k−4)
[

λ̄2 + λ2 − 2λλ̄
]

+ |λ|(2k−4)Õk

= |λ|(2k−4)
[

|c|2(λ − λ̄)2 + Õk

]

(5.17)

where

Õk = |λ|2
{

Ok−2

[

c
(

λ
|λ|

)k

+ c̄
(

λ̄
|λ|

)k
]

. . .

. . . + Ok

[

c
(

λ
|λ|

)k−2

+ c̄
(

λ̄
|λ|

)k−2
]

+ OkOk−2 . . .

. . . − 2Ok−1

[

c
(

λ
|λ|

)k−1

+ c̄
(

λ̄
|λ|

)k−1
]

− O2
k−1

}

(5.18)

We note that since Ok → 0 as k → 0, we also have

lim
k→∞

Õk = 0 (5.19)

Furthermore, since c, c̄ 6= 0 and λ has nonzero imaginary part, |c|2(λ− λ̄)2 is nonzero, and

thus ζk in (5.17) is also non-zero for k sufficiently large. Finally,

∣

∣

∣

∣

ζk
ζk−m

∣

∣

∣

∣

= |λ|2m
[

|c|2(λ− λ̄)2 + Õk

|c|2(λ− λ̄)2 + Õk−m

]

(5.20)

From this last expression and (5.19) we obtain that

lim
k→∞

∣

∣

∣

∣

ζk
ζk−m

∣

∣

∣

∣

1
2m

= |λ| (5.21)

which completes the proof. �

Based on this proposition, if λ(2) is complex (non-real) and each node calculates an

estimate of
∣

∣λ(2)
∣

∣ through (5.16) then the estimate will converge to the true value as k

grows.

5.3.4 Remarks

The decision heuristic presented (Figure 5.3 on page 90) assumes that the first two es-

timators (which are designed for real valued λ(2) only) produce wrong and in particular

differently wrong estimates, so that there is a sufficiently large disagreement between both
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schemes so that it can be detected — clearly, if both schemes produced wrong but identical

estimates, then our heuristic would consider these wrong estimates to be correct. However,

our assumption of sufficiently different biasses between the schemes is plausible given the

fact that the first scheme only uses two samples for the estimation, whereas the recursive

least squares scheme uses the entire history of samples attempting to minimise the square

error between model and observed data.

An alternative approach can be used by employing several instances of the first estima-

tion scheme, but using different m parameters. It can be shown (and this will indeed be

observed in the simulations below) that in the presence of complex valued λ(2), the esti-

mates produced by the scheme will exhibit some periodic, oscillatory behaviour. Roughly

speaking, this oscillatory behaviour is due to the expression of the
∣

∣w
(i)
k,m

∣

∣ in (5.11) not

converging to 1; rather it consists of a fraction of trigonometric functions that produces

these oscillations (a similar behaviour can so also be shown for the RLS based estimator).

In particular, the m parameter will affect the phase of these oscillations. Thus, using

multiple instances of the first estimation scheme with different m parameters may be an

alternative approach to detect whether λ(2) is real valued or not.

Next, by its very nature, when running the consensus algorithm over a connected

network, the states of all nodes will converge to a common value. In that case, the difference

in states z(i)k will tend to zero. On the one hand, numerical calculation of the z(i)k will be

less and less precise as the z(i)k approach zero, and on the other, when using the algorithms

based on Propositions 5.1 and 5.2, the division of z(i)k by z(i)k−m resp. ζ(i)k by ζ(i)k−m will also

become more and more numerically problematic. It is, however, not too difficult to solve

these problems. Simply, whenever some node’s state x(i)k agrees with all of its neighbours

on the top s digits, it shall stop broadcasting those top s digits and keep exchanging only

the lower weight digits.

We must assume that in an actual implementation sufficiently exact numerical compu-

tations can be provided as the current approach does not take into account the inherently

limited accuracy of numerical calculations in digital processors.

Finally, in this section we have assumed that there is a spectral gap between λ(2)

(and its conjugates) and the remaining eigenvalues of the matrix P . Since the set of

matrices satisfying this property is dense in the set of stochastic matrices, this assumption

is also entirely reasonable. However, the case where
∣

∣λ(2)
∣

∣ =
∣

∣λ(3)
∣

∣ ≥
∣

∣λ(4)
∣

∣ ≥ . . . can

also be accommodated in our framework by including more estimators, similar to the ones

presented above, and by modifying the logic described in Figure 5.3 on page 90 accordingly.

This is omitted here for ease of exposition, and because the aforementioned case is a low

probability event.
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5.3.5 Demonstration of estimation

In the following two examples, we generated a two-dimensional random geometric graph

with random connection radii for each node. These type of graphs are often used when

modelling wireless networks, in particular wireless sensor networks, Penrose (2003); Santi

(2005). A random geometric graph or disc graph is created as follows: Place n nodes

uniformly distributed in the unit square, then interconnect the nodes based on the so-

called distance parameters or connection radii of the nodes. That is, each node i has a

parameter r(i) based on which it connects (or “sends information”) to other nodes that are

closer than r(i) from it: if some node j is at (Euclidian) distance d(ij) from node i then

there is an edge from node i to node j (i. e. node j is in reach) if and only if d(ij) ≤ r(i).

Time step k

λ̃
(2)
comb.

λ̃
(2)
C

λ̃
(2)
B

λ̃
(2)
A

0 5 10 15 20 25 30

0

1

0

1

0

1

0

1

Figure 5.4: Comparison of the estimation schemes for real valued λ(2) ≃ 0.80.

Figure 5.4 above and Figure 5.5 on the following page show the outputs of our three

estimation schemes as well as their combination for two different situations: one where

λ(2) is real, and one where λ(2) is complex (non-real). For each case we have plotted

each nodes’ estimates of
∣

∣λ(2)
∣

∣ as a function of time (iterations of the estimation schemes),

provided by the different algorithms, as well as the combination of using our proposed

decision heuristic. From top to bottom, the subplots show the evolution of the estimates

based on A) Proposition 1, B) recursive least squares and C) Proposition 2; as well as

their combination in the last subplot. The true value of
∣

∣λ(2)
∣

∣ is indicated by the dashed

horizontal line.
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Time step k

λ̃
(2)
comb.

λ̃
(2)
C

λ̃
(2)
B

λ̃
(2)
A

0 10 20 30 40 50 60

0

1

0

1

0

1

0

1

Figure 5.5: Comparison of the estimation schemes for complex λ(2) ≃ 0.63 + 0.05i.

Comment The following parameters were used. The random disc graphs on n = 20 nodes

were created using connection radii r(i) uniformly distributed in the interval [ 0.1 , 0.6 ].

We used m = 5 in the algorithm based on Proposition 5.1, and m = 1 in that based on

Proposition 5.2. The initial estimates of the recursive least squares algorithm was set to

0.5. Finally, the combination of the estimates was done using the threshold ǫ = 0.005.

When the network has a real valued λ(2), it can be seen that the each node’s estimates

using the first two estimators converge quickly to the correct value. The estimates of the

third estimator also converge, but to the wrong value.4 Since the two estimators targeted

at a real valued λ(2) both converge to the same value, the error between them quickly

both drops below the preset threshold, and the combination scheme correctly switches to

returning the value of the first estimator.

In the complex (non-real) case, Figure 5.5, the situation is different. Both the estimates

of the estimators aimed at real valued λ(2) do not converge to the correct value of
∣

∣λ(2)
∣

∣,

but rather oscillate around it. The error between them is sufficiently large so that the

combination scheme returns the value of the third estimator, which in turn now provides

correct estimates.

4 In fact, it is not difficult to show that in this case the estimate which Estimate_complex() converges

to will actually be λ(2)
√

∣

∣λ(3)
∣

∣

/

λ(2).
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5.4 Decentralised connectivity control

We now present our algorithm for decentralised connectivity control. Please note that, by

an abuse of notation, we shall simply use λ in the remainder of this chapter to refer to
∣

∣λ(2)
∣

∣. As mentioned already, we wish to adjust the communication radius of each sensor in

the network, {r(1), . . . , r(n)} based on a local estimation of λ, with the ultimate objective of

regulating λ to some neighbourhood of a target value; namely so that
∣

∣λ−λ∗
∣

∣ < ε for some

λ∗ ∈ ( 0 , 1 ) and ε > 0. Since we are trying to address situations in which individual sensors

may fail resulting in a change in network connectivity, we are inherently dealing with

situations where the network topology is slowly (but not constantly) changing. In what

follows we therefore make the assumption of quasi-stationarity; specifically, we assume that

the local estimators operate over very fast time scales when compared with the local control

actions (local radius updates). This assumption greatly facilitates analytical tractability

and makes our convergence proofs somewhat easier to develop. Finally, since there may be

many sets of communication radii { r(1) , . . . , r(n) } that guarantee
∣

∣λ − λ∗
∣

∣ < ε, we shall

make additional assumptions to guarantee that the closed loop algorithm converges to a

common set of radii; namely, we seek a control action that guarantees convergence of all

radii to the same value. We emphasise again that this assumption is made to facilitate

analytical tractability, but it can also be motivated from a practical standpoint, where

having all nodes use the same broadcast radius should contribute to similar battery lifetimes

of the nodes. However, our framework is sufficiently general to allow other quantities of

interest to be included (for instance, equal numbers of neighbours, maximum numbers of

neighbours); although, the convergence proofs will change accordingly.

5.4.1 Consensus with input

Our control algorithm is again motivated by the intuitive idea that adding the same value

to each member in a consensus scheme will not hinder the eventual agreement between the

members. This was already noted in Lemma 4.1. However, this notion can be applied to

a much broader class of consensus schemes as we show using the recent results of Moreau,

2005.

Theorem 5.1 (Generalised consensus with common input)

Let Gk =
(

V ,Ak

)

be a sequence of strongly connected graphs, θ
(

xk, k
)

be a sequence of

finite real numbers and f be a map on Gk satisfying the following conditions. Associated

to each directed graph G = (V ,A) with node set V = {1, . . . , n}, each node i ∈ V and each

state x ∈ Xn, there is a compact set E(i)(A)(x) ⊂ X satisfying:

(i) f (i)(x, k) ∈ E(i)
(

Ak

)

(x) ∀k ∈ N ∀x ∈ Xn,

(ii) E(i)(A)(x) =
{

x(i)
}

whenever the states of node i and its neighbouring nodes j are

all equal,
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(iii) E(i)(A)(x) is contained in the relative interior of the convex hull of the states of

node i and its neighbouring nodes j whenever the states of node i and its neighbouring

nodes j are not all equal,

(iv) E(i)(A)(x) depends continuously on x, that is, the set-valued function E(i)(A) : Xn ⇉

X is continuous.5

Then, if xk =
(

x
(1)
k , . . . , x

(n)
k

)

T evolves for some xk=0 = x0 according to

xk+1 = f
(

xk, k
)

+ θ
(

xk, k
)

1 (5.22)

the elements of xk will approach each other over time, that is

lim
k→∞

x
(i)
k −x(j)k = 0 (5.23)

for all i, j ∈ {1, . . . , n}.

Proof Start by defining

yk := xk − σk1 where σk :=

k−1
∑

i=0

θ
(

x(i), i
)

(5.24)

Then σk+1 = σk + θ
(

xk, k
)

and

yk+1 = xk+1 − σk+11

(5.22)
= f

(

xk, k
)

+ θ
(

xk, k
)

1−
[

σk + θ
(

xk, k
)

]

1

(5.24)
= f

(

yk + σk1 , k
)

− σk1
︸                          ︷︷                          ︸

:=g(yk,k)

(5.25)

Now, if g satisfies all of the assumptions (1)–(4) of the theorem, the results from Moreau

(2005) guarantee that all entries in yk will converge to a common value, and hence, through

(5.24), the values in xk have to approach each other. So let us test g for each of the four

assumptions.

(i) For all nodes i ∈ V ,

g(i)
(

yk, k
)

= f
(

yk + σk1 , k
)

− σk ∈ E(i)
(

Ak

)(

yk + σk1
)

− σk
︸                             ︷︷                             ︸

=:Ê(i)(Ak)(yk)

(5.26)

Clearly, if f
(

xk, k
)

∈ E(i)
(

Ak

)(

xk
)

for all i ∈ V , k ∈ N and x ∈ Xn, and if

E(i)
(

Ak

)(

xk
)

is compact, then Ê(i)
(

Ak

)(

yk
)

is also compact given σ is bounded.

5 Put simply, these four conditions require that the updated state of each node must be a strict convex
combination of its own and its neighbours’ states, and that the update function must be continuous.
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(ii) Whenever the states of node i and its neighbours are all equal, that is y(i)k = y
(j)
k for

all j ∈ N (i),

Ê(i)
(

Ak

)(

yk
)

= E(i)
(

Ak

)(

yk + σk1
)

− σk =
{

y
(i)
k + σk

}

− σk =
{

y
(i)
k

}

(5.27)

(iii) Assume the states of node i and its neighbours j ∈ N (i) are not all equal. If

E(i)
(

Ak

)(

xk
)

is contained in the relative interior of the convex hull (conv{·}) of

the states of node i and its neighbours, we have

E(i)
(

Ak

)(

xk
)

⊂ convh
j∈N (i)

{

x
(j)
k

}

E(i)
(

Ak

)(

xk − σk1+ σk1
)

⊂ convh
j∈N (i)

{

x
(j)
k + σk − σk

}

E(i)
(

Ak

)(

yk + σk1
)

− σk ⊂ convh
j∈N (i)

{

y
(j)
k + σk

}

− σk

and with convh{·} being a linear operator

E(i)
(

Ak

)(

yk + σk1
)

− σk ⊂ convh
j∈N (i)

{

y
(j)
k + σk − σk

}

Ê(i)
(

Ak

)(

yk
)

⊂ convh
j∈N (i)

{

y
(j)
k

}

(5.28)

(iv) If E(i)
(

Ak

)(

xk
)

depends continuously on xk, so will E(i)
(

Ak

)(

xk + σk1
)

− σk1 =

Ê(i)
(

Ak

)(

yk
)

.

We have thus established, that the update map g satisfies Assumption 1. Assuming

that the graphs never disconnect, we can now apply Theorem 1 from Moreau (2005). It

guarantees that the entries in yk will converge to a common value, and thus, through (5.24)

the states xk have to approach each other so that x(i)k − x
(j)
k → 0 as k → ∞. �

5.4.2 Application to decentralised connectivity control

In the context of decentralised connectivity control, both Lemma 4.1 on page 58 and

Theorem 5.1 are very useful. Roughly speaking, they indicate that consensus algorithms

with an input term, that can depend on the consensus states, eventually become scalar.6

That is, their stability and convergence properties are eventually governed by the scalar

equation

xk+1 = xk + θ
(

xk, k
)

(5.29)

Since the properties of such systems are well understood, the above theorems offer inter-

esting possibilities for the design of control laws.

6 And while this convergence is asymptotic, in any practical implementation of this algorithm quanti-
sation effects will be unavoidable, hence the system should become scalar in finite time.
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With this in mind we propose updating individual radii using a convex combination of

their neighbours’ values, plus an input term that depends on the estimated second largest

eigenvalue. Specifically, we propose the following decentralised control law

rk+1 = Pkrk + µ
[

λ
(

rk
)

− λ∗

]

1 (5.30)

for some rk=0 = r0. Here Pk is now a sequence of primitive, row-stochastic averaging ma-

trices on the graphs induced by rk, λ
(

r) is the magnitude of the second largest eigenvalue

of the averaging matrix P as in (5.2) for the graph induced by r, and µ > 0 is a suitable

control gain. We are then guaranteed by Lemma 4.1 on page 58 that the radii will converge

to a common value.

The next step is thus to determine conditions on the control gain µ so that λ
(

rk
)

will

indeed converge to (a desired neighbourhood of) λ∗.

Comments At this point, the similarities to the work from the previous chapter become

evident. The proposed control law has a similar structure with its local and global com-

ponent. However, the local component does not include utility functions (or rather, the

utility functions are the identity function) and, most importantly, the global function is

neither continuous nor monotonous.

We also note that any other consensus scheme (to which Theorem 5.1 can be applied)

may be used here. The proposed controller is decentralised in that each node only requires

the radius information of its neighbours, information that can easily be broadcast along

the communication that is necessary to run the consensus algorithm needed to estimate

λk in the first place.

Last, (5.30) has strong similarities with the Lur’e problem, see for instance Narendra

and Taylor (1973); Vidyasagar (2002); Khalil (1992) and references therein for the precise

problem statement and the wealth of results related to it. However, the classic results

cannot be applied to the problem presented here since the non-linearity does not satisfy

the continuity assumption that is usually made, nor does it guarantee a unique solution

(as well shall see in the next section) which is also required to apply these results.

5.4.3 Conditions for convergence of the decentralised control law

As we have shown, it follows from the closed loop dynamics that we can assume that

eventually all radii have converged to a common value. In that case, (5.30) will be reduced

to a scalar equation for the whole network:

rk+1 = rk + µ
[

λ
(

rk
)

− λ∗

]

(5.31)

for some rk=0 = r0. Note that we write λ
(

rk
)

since the second largest eigenvalue of

the averaging matrix of the network depends on the communication radius used by the

nodes. Ideally we would like to ensure that λ
(

rk
)

asymptotically approaches λ∗ under
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Figure 5.6: Plot of λ(r), the magnitude of the second largest eigenvalue of the averag-
ing matrix of a random (undirected) disc graph on 20 nodes as a function of the
(common) communication radius r.

the assumption that the estimation part of the algorithm can be completely decoupled

from the closed loop control. As we shall see, even under this considerable simplification,

proving stability is nontrivial. In particular, two practical issues arise.

Quantisation The first complication arises from the following observation. Normally,

with problems of this type, one makes use of the fact that the eigenvalues of the consensus

matrix vary as a continuous function of the matrix entries. In what we are proposing, the

entries of P are either zero, or jump to some non-zero value as we adjust the communication

radius of each node. In other words, the matrix entries vary abruptly as a result of the

control action; consequently, the result of this is that λ(r) also changes abruptly. Thus, it

is clear that not every arbitrary second largest eigenvalue value in the ( 0 , 1 ) interval can

be achieved through feedback of the proposed type. Rather, the network can only produce

a finite set of values, corresponding to the (limited number of) different possible topologies

of the network with a fixed number of nodes in fixed locations. This fact is depicted in

Figure 5.6 above. The plot shows how the magnitude of the second largest eigenvalue

changes with the (common) communication radius for a given random disc graph on 20

nodes. Note that the curve is not continuous, but broken up into segments. A given

magnitude of the second largest eigenvalue never corresponds to just a single radius, but a

range of radii. Thus the best we can hope for is to converge to some neighbourhood of λ∗.

Of course, for our application, this is entirely satisfactory as both connectivity and bounds

on rates of information transmission in the network are controlled using this strategy.



102 CHAPTER 5. SWITCHING, FEEDBACK AND ESTIMATION

Monotonicity A second complication arises due to the fact that we do not precisely

know the relationship between λ(r) and r. In fact, the previous example shows that this

relationship need not even be monotonic. However, it is reasonable to assume that the

aforementioned relationship is approximately monotonic. This follows from the following

argument. Our strategy is motivated by the intuition that as the radii of the individual

nodes increase (decrease), roughly speaking, the second largest eigenvalue of P also will

decrease (increase). Referring to Hartfiel (1998), we know that the coefficient of ergodicity

of a stochastic matrix is an upper bound on the magnitude of the second largest eigenvalue,

so |λ| ≤ τ(P ). Recall that for a stochastic matrix P , using the 1-norm, τ(P ) is defined as

τ(P ) =
1

2
max
i6=j

∥

∥

∥P (i) − P (j)
∥

∥

∥

1
(5.32)

where P (i) denotes the ith row of P . Thus, when the rows of P become ever closer to each

other as measured by the 1-norm, τ(P ) decreases, and thus the magnitude of the second

eigenvalue will also eventually decrease. So even though we are not assured of a locally

monotonic relationship, in principle it should still be possible to regulate the magnitude

of this second eigenvalue to a neighbourhood around some target value, if we have some

knowledge of the approximate manner in which λ(r) varies with r.

r

λ

λ∗

λ

λ

r r̂ r

R

Figure 5.7: Illustration of a monotonic λ(r) curve with some relevant points highlighted
relative to λ∗ highlighted.

Before we present our convergence results, some further notation is helpful. Once again,

to ease exposition please refer to Figure 5.7 above as we give the following definitions. Let

λ := inf
{

λ(r) : λ(r) ≥ λ∗
}

and λ := sup
{

λ(r) : λ(r) ≤ λ∗
}

(5.33)

Then λ ≤ λ∗ ≤ λ. Put simply, for any λ∗ there is a feasible λ “just above” and “just

below”, called λ and λ respectively. Now define the following radii

r := inf
{

r : λ(r) ≤ λ
}

and r̄ := sup
{

r : λ(r) ≥ λ
}

(5.34)
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Then λ(r) > λ for r < r and λ(r) < λ for r > r̄. The radii r resp. r̄ then are the smallest

resp. largest radius so that λ(r) ≤ λ resp. λ(r̄) ≥ λ. Finally, we also define the closed

interval R = [ r , r̄ ].

With the above definitions, the following two theorems provide simple conditions on the

controller gain µ so that the system (5.31) converges to within the interval R (attractivity),

and stays in that interval once it has entered it (invariance). Note that estimates of these

bounds may be calculated a priori for graphs with typical geographic distributions (or they

could be estimated in real time by each node in a decentralised fashion). The important

point to note is that the convergence of the controlled system is guaranteed provided that

the controller gain is small enough.

The following Theorem 5.2 contains a condition on µ which guarantees that if the

system starts in R it will remain in R. Application of the theorem requires that the graph

of λ satisfies the following condition when r is in R: There exists κ(0) > 0 such that

−κ(0)(r−r) ≤ λ(r)−λ∗ ≤ −κ(0)(r−r) for r ≤ r ≤ r̄ (5.35)

These bounds are illustrated in Figure 5.8 below.

r

λ

λ

λ∗

λ

r rm r

b

κ(1)

κ(1)

κ(2)

κ(2)

κ(0)

κ(0)

Figure 5.8: Illustration of the bounds on λ(r) as required by Theorems 5.2 and 5.3. See
also Figure 5.11 for a real example of this sketch.

Theorem 5.2 (Invariance of R)

Consider a scalar system described by (5.31) and let κ(0) and the interval R be as

defined above. Suppose that the control gain µ ≥ 0 is chosen such that

µκ(0) ≤ 1 (5.36)

Then whenever rk=0 ∈ R, the resulting sequence rk will stay in R for all k ≥ 0.
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Proof Suppose that rk ∈ R. We need to show that rk+1 ∈ R. Then we will have

demonstrated invariance of R. We first show that rk+1 ≤ r. Since µ ≥ 0 and µκ(0) ≤ 1, it

follows from condition (5.35) and rk ∈ R that

µ
[

λ
(

rk
)

− λ∗
]

≤ −µκ(0)
[

rk − r̄
]

≤ µκ(0)
[

r − rk
]

≤ r̄ − rk ; (5.37)

hence

rk+1 = rk + µ
[

λ
(

rk
)

− λ∗
]

≤ rk + r − rk

≤ r (5.38)

Next, we show that rk+1 ≥ r. Since µ ≥ 0 and µκ(0) ≤ 1, it follows from condition

(5.35) and rk ∈ R that

µ
[

λ
(

rk
)

− λ∗
]

≥ −µκ(0)
[

rk − r
]

≥ −
[

rk − r
]

≥ r − rk ; (5.39)

hence

rk+1 = rk + µ
[

λ
(

rk
)

− λ∗
]

≥ rk + r − rk

≥ r (5.40)

�

To discuss convergence of the solutions of system (5.31) to R we let

dk :=



















r − rk if rk < r

0 if r ≤ rk ≤ r

rk − r̄ if rk > r

(5.41)

be the distance of rk from R. Then we say that rk converges to R if limk→∞ dk = 0.

The next theorem contains a condition on µ which guarantees that all solutions of the

system converge to R. Use of this theorem requires that λ satisfy the following sector

conditions: There exist constants κ(2) ≥ κ(1) > 0 such that

−κ(1)(r − r) ≤ λ(r) − λ∗ ≤ −κ(2)(r − rm) for 0 < r < r (5.42)

−κ(2)(r − rm) ≤ λ(r) − λ∗ ≤ −κ(1)(r − r̄) for r̄ < r ≤
√
2 (5.43)

where rm := (r + r̄)/2. An illustration of these sector bounds is given in Figure 5.8.
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Theorem 5.3 (Attractivity of R)

Consider a scalar system described by (5.31) and let κ(0), κ(1), κ(2) and the interval R
be as defined above. Suppose that the control gain µ > 0 is chosen such that µκ(0) ≤ 1 and

µκ(2) < 2 (5.44)

Then every solution of (5.31) converges to R.

Proof Letting α := max{ 1−µκ(1) , µκ(2)−1 } we will show that

dk+1 ≤ αdk (5.45)

and hence dk ≤ αkdk=0. Since by assumption |α| < 1, we then obtain that limk→∞ dk = 0.

Since R is invariant, we need only discuss the situations for which rk /∈ R as well as

rk+1 /∈ R. There are four cases to consider.

(i) rk < r and rk+1 < r. In this case dk = r − rk and

dk+1 = r − rk+1

= r − rk − µ
[

λ
(

rk
)

− λ∗

]

≤ r − rk − µκ(1)
[

r − rk
]

≤ (1− µκ(1))
[

r − rk
]

≤ (1− µκ(1))dk (5.46)

that is dk+1 ≤ (1− µκ(1))dk, and thus (5.45) holds.

(ii) rk < r and rk+1 > r. In this case dk = r − rk and

dk+1 = rk+1 − r̄

= rk + µ
[

λ
(

rk
)

− λ∗

]

− r̄

≤ rk + µκ(2)
[

rm − rk
]

− r̄

≤ (1− µκ(2))rk + µκ(2)rm − r̄ (5.47)

Recalling that µκ(2) < 2 and rm = (r + r̄)/2, we can see that

µκ(2)rm − r̄ = −
(

1− µκ(2)

2

)

r +
µκ(2)

2
r

≤ −
(

1− µκ(2)

2

)

r +
µκ(2)

2
r

≤ −(1− µκ(2))r (5.48)

Hence

dk+1 ≤ (1− µκ(2))rk − (1− µκ(2))r

≤ (µκ(2) − 1)dk (5.49)

and thus (5.45) holds.
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(iii) rk > r̄ and rk+1 < r. In this case dk = rk − r̄ and

dk+1 = r − rk+1

= r − rk − µ
[

λ
(

rk
)

− λ∗

]

≤ r − rk − µκ(2)
[

rm − rk
]

≤ −(1− µκ(2))rk + r − µκ(2)rm (5.50)

Again, we can see that since µκ(2) < 2

r − µκ(2)rm =

(

1− µκ(2)

2

)

r − µκ(2)

2
r̄

≤
(

1− µκ(2)

2

)

r̄ − µκ(2)

2
r̄

≤ (1− µκ(2))r̄ (5.51)

Hence

dk+1 ≤ −(1− µκ(2))rk + (1− µκ(2))r̄

≤ (µκ(2) − 1)dk (5.52)

and thus (5.45) holds.

(iv) rk > r̄ and rk+1 > r. In this case dk = rk − r̄ and

dk+1 = rk+1 − r̄

= rk + µ
[

λ
(

rk
)

− λ∗

]

− r̄

≤ rk − r̄ + µκ(1)
[

r̄ − rk
]

≤ (1− µκ(1))
[

rk − r̄
]

≤ (1− µκ(1))dk (5.53)

that is dk+1 ≤ (1− µκ(1))dk, and thus (5.45) holds.

�

In summary, the theorem gives a condition on the control gain so that the closed loop

system (5.31) converges to the interval R.

Comments If λ(r) is not monotonic with r then it is possible that limr→r̄− λ(r) > λ∗

where the notation means that the limit is taken from the left; see Figure 5.9 on the facing

page. If this occurs, one cannot satisfy (5.35) with any κ(0) > 0. In this case (5.35) can be

satisfied by replacing r̄ with r̄ε where r̄ε = r̄ + ε and ε > 0; of course κ(0) will depend on

ε; see Figure 5.9. A similar remark holds if limr→r+
λ(r) < λ∗.
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Figure 5.9: Illustration of λ(r) curve that is not monotonic.

Furthermore, it is possible that with the above control law the network may accidentally

become disconnected. The closer λ∗ is to one, the more likely this may happen: For

instance, assume at time step k the estimated λk is smaller than λ∗. In that case, all the

nodes will reduce their radius by a certain amount (that is, by µ
[

λk − λ∗
]

). Now, if the

updated radii are so small that a particularly “outlying” node becomes “out of reach”, the

graph will disconnect.

However, in general, the disconnection of the graph can easily prevented by setting a

certain minimum radius that the nodes are allowed to use: this would be the smallest com-

mon radius (plus, maybe, a safety margin) that would still guarantee connectedness of the

network, i.e. it would correspond to the largest inter-node distance. This information can

either be pre-programmed into the nodes at the time of deployment (if a the corresponding

maximum inter-node distance can be guaranteed), or after deployment. In any case, this

only needs to be done once, as we assume that the nodes do note change their position

after deployment.

5.5 Simulation results

To conclude this section, we now present some simulation results. Most of the plots shown

in this section are based on random disc graphs of 50 nodes, with initial radii uniformly

distributed in [ 0.1 , 0.6 ], and λ∗ = 0.8.

First we show a series of plots to illustrate the pertinent features of our stability proofs,

then we show the general performance of our proposed controller, and finally examples of

modified control objectives.
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5.5.1 Example 1: Controller stability bounds

Figure 5.10 and Figure 5.11 show an experimentally obtained λ(r) curve, the second figure

being a close-up view of the first. Picking λ∗ = 0.8 we indicate the values of λ and λ̄, as

well as r, r̄ and rm with dotted lines.

λ

r

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Figure 5.10: Actual λ(r) of a random disc graph on 50 nodes, with an example of the
bounds as required for by Theorems 5.2 and 5.3 drawn for λ∗ = 0.8.

We then determined the bounds κ(0), κ(1) and κ(2) on the curve, which are indicated by

the thicker lines, similar to Figure 5.8. The actual values of those bounds are κ(0) ≃ 14.3,

κ(1) ≃ 0.17 and κ(2) ≃ 8.72.7 When controlling the nodes’ radii with (5.30), Theorem 5.2

requires that µ has to be less than 1/κ(0) ≃ 0.067 to guarantee invariance of the corre-

sponding interval R ≃ [ 0.321 , 0.322 ]. Attractivity of R according to Theorem 5.3 in turn

requires µ to be less than 2/κ(2) ≃ 0.23.

Thus setting µ = 0.05, we re-initialised the network with randomly distributed radii in

the [ 0.1 , 0.6 ] and ran the controller on the network. As we can see in Figure 5.12 on the

next page the convergence of both the radii and λ is smooth and fast.

7 Note that tighter bounds can be found.
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Figure 5.11: Magnified view of the region around (λ∗, rm) from the previous plot.
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Figure 5.12: Evolution of λk and the individual nodes’ radii r(i)k in the 50 node network
analysed in Figure 5.10, for λ∗ = 0.8, with µ = 0.05.
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5.5.2 Example 2: Combining Control and Estimation

In the previous example we displayed the converged values of the estimation scheme. To

show in more detail how estimation and control scheme work together, we present Fig-

ure 5.13. Plotted is again the evolution of the nodes’ radii under control action (5.30) as

well as the estimates of λ, shown in the upper subplot. These estimates where calculated as

described in Section 5.3. We allowed 100 time steps for the estimation scheme to converge,

before taking a control action based on the new estimates.

It can be seen that after every topology change all nodes’ estimates converge to a com-

mon value and that the control scheme successfully regulates the second largest eigenvalue

of the network to λ∗ = 0.8.

r
(
i
)

Time step k

λ̃
(
i
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 5.13: Evolution of the estimates of λk and the individual nodes’ radii r(i)k , as
the controller updates the radii every 100 iterations of the estimation scheme, for
λ∗ = 0.8, with µ = 0.05

5.5.3 Further Examples of control

Next, we present another example that depicts how the (true value of the) second largest

eigenvalue in magnitude and the nodes’ radii change over time, as the nodes control their

radii using (5.30).

Figure 5.14 shows a situation where λ∗ = 0.5 was required. As this represents a very

densely connected network, all nodes had to increase their radius. In turn, in Figure 5.15

we start off with an extremely highly connected network (it was almost fully connected),

and all nodes have to significantly decrease their radii to achieve the desire λ∗ = 0.8.
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Figure 5.14: Evolution of λk and the individual nodes’ radii r(i)k in a network of 50 nodes
for λ∗ = 0.5, with µ = 0.05.
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Figure 5.15: Evolution of λk and the individual nodes’ radii r(i)k in a network of 50 nodes
with very large initial radii, for λ∗ = 0.8, with µ = 0.05.

The plots in Figure 5.16 on the following page show a scenario where the network had

to react to a change in topology: At k = 30 we randomly removed half of the nodes from

the network, thus reducing the graph size to 25 nodes. The resulting network’s second

largest eigenvalue in magnitude is larger than desired (i. e. it is less connected), and thus

the controller compensates this by increasing the remaining nodes’ radii until λ∗ = 0.8 is

achieved again.
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Figure 5.16: Evolution of λk and the individual nodes’ radii r(i)k in a network of 50 nodes,
where 25 nodes are removed at k = 30 (for λ∗ = 0.8, with µ = 0.05).

5.5.4 Validation of control results

In Figure 5.17 on the next page we compare the converged radii of our controller for several

different λ∗ (circles) with the second largest eigenvalue in magnitude of the averaging

matrix of random disc graphs created with different initial radii (crosses). Until now

we have only shown individual results from single instances of graphs. This plot is to

demonstrate that our estimation and control scheme works over a whole range of set

points, for any number of trials.

The data points marked by crosses were obtained as follows. Picking 17 different values

of r we generated 1000 random geometric graphs (on 50 nodes) for each radius. Next, we

calculated the second largest eigenvalue of the resulting averaging matrix of each graph

λ(r), and finally plotted the average value against the initial r value used. In turn, the data

points marked by circles were generated by choosing 14 different values for λ∗, generating

1000 graphs and running the control algorithm on the network. The resulting converged

(common) radii rconv(λ∗) were then averaged and the value plotted against the particular

λ∗ chosen.

As all points appear to lay on the same curve, the plot indicates that nodes radii set

by the controller indeed converge to the corrected value over the entire range of sensible

λ∗ values.
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Figure 5.17: Crosses ×: average λ(r) of 1000 geometric graphs on 50 nodes created with
common radius r. Circles ◦: Average converged radii rconv after control targeted
at different λ∗ values, for 1000 trials each (where the initial radii where randomly
distributed).

5.5.5 Examples of other control objectives

As we mentioned in Section 5.2, our control scheme is general enough to allow objectives

other than a common radius while achieving a desired λ∗.

Imagine a situation in which some nodes are equipped with a longer-lasting power

supply and we can allow those nodes to have a larger radius than most of the other nodes

in the network. This would correspond to weighting the nodes’ radii in the averaging

scheme. It is possible to include such weighting in our framework, and all the proofs

directly hold with but a small modification, Knorn et al. (2009c). An example of this

is given in Figure 5.18, where by design we wish one node to have twice the radius as

the others, and one node half the radius. As can be seen, the eigenvalue of the network

converges quickly to its desired value of λ∗ = 0.8, and the nodes radii converge to a common

value with the exception of the two nodes of different weighting.

Comment Note that such a weighting will result — contrary to the other cases — in

a directed network (that is, a non-symmetric averaging matrix), even in steady state. As

we mentioned earlier it is an important feature of our algorithms that they work in both

undirected and directed networks.

Finally we now present an example where a completely different control objective is

desired. Regulating the second largest eigenvalue in magnitude, here we do not care about

the radii but rather about the number of neighbours of each node. In Figure 5.19 on the

following page we required the nodes to achieve consensus on the number of neighbours,
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Figure 5.18: Evolution of λk and the individual nodes’ radii r(i)k in a network of 50 where
two nodes where to have twice resp. half the radius as their peers. Again, λ∗ = 0.8
and µ = 0.05.

rather than the radii. Although one needs to redo the proof of stability, we can see that

the network converges to a stable solution.
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Figure 5.19: Evolution of λk and the individual nodes’ radii r(i)k , 50 nodes, consensus on
number of neighbours.

5.6 Conclusion

In this chapter we have presented a general framework for controlling the topological

properties of a network of distributed sensors. This work is closely related to the contents
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of the previous chapter, with the important difference that the global term is not provided

“externally” but estimated in a distributed fashion by the network agents themselves. As

before, our framework breaks free of many of the assumptions of previous work such as

graph symmetry, and utilises only simple ideas from control and estimation to regulate

important graph properties. Conditions for the stability of our algorithms are presented.

Roughly speaking, these results state that if the nodes are not too aggressive in the manner

in which they expand or contract their neighbourhood set, stability is assured. This bears

a strong resemblance with the growth bounds that were required in the previous chapter

in order to calculate the controller gains.

Limitations

While the results reported in this chapter are certainly promising, there a number of

limitations to our theoretical contributions. The first concerns the estimation of the second

largest eigenvalue in magnitude, where it would be beneficial if an estimation scheme could

be found that can estimate it irrespective of whether it is real or complex (non-real) valued

and hence does not require a decision-heuristic as presented here.

Next, the separation of time scales between estimation and control scheme may be an

unnecessarily restrictive assumption. In fact, initial tests have shown that estimation and

control scheme may well be “interleaved” in the sense that single iterations of each scheme

can be performed in alternation without compromising convergence (provided the gains

are small enough).

Last, the overall convergence proof here relies on the convergence to a scalar equation,

which makes it difficult to derive precise convergence rates for the overall problem. It may

be an interesting problem to attempt to prove convergence without this intermediate step

and derive concrete convergence rates.

The last chapter of this thesis will discuss three applications where the main results

from the previous chapters are applied to a number of real-world problems.
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Applications

This chapter presents three practical applications for some of the results pre-
sented in the previous three chapters. In particular, they involve stability con-
ditions for a power control algorithm (application of our CLCLF result), coop-
erative control of emissions in a fleet of plug-in hybrid electric vehicles as well
as a real implementation of a small network of wireless motes (as applications
for the cooperative control results).

Chapter contents

6.1 Stability of the Foschini-Miljanic algorithm

6.2 Emissions control in a fleet of Hybrid Vehicles

6.3 Real-world implementation of cooperative control

6.1 Stability of the Foschini-Miljanic algorithm

113.81102ptThe first application we discuss uses one of our common linear co-positive

Lyapunov function results from Chapter 3 to derive conditions for stability in the presence

of time-varying time-delays and arbitrary switching in a popular distributed power control

algorithm for wireless communication networks. This section is based on joint work with

Dr. A. Zappavigna, Prof. P. Colaneri1, Dr. T. Charalambous2 and Prof. R. Shorten; it is

accepted for publication in the Automatica journal, Zappavigna et al. (2011).

6.1.1 Introduction

Some Code Division Multiple Access (CDMA) based power control algorithms aim to as-

sign power to wireless nodes in a distributed fashion, while guaranteeing a certain Quality

of Service (QoS), Schulze and Lüders (2005). In real communication systems, especially

ad-hoc networks, distributed algorithms require communication among the nodes. But

processing time (coding and decoding), propagation delays and waiting for availability of

1 Dr. Zappavigna and Prof. Colaneri are with the Dipartimento di Elettronica e Informazione, Politec-
nico di Milano, Italy.

2 Dr. Charalambous was with the Department of Computing, Imperial College London, United King-
dom.
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channels for transmission all introduce delays into the network. Additionally, the nodes

may be mobile, entering or leaving the network, causing the network topology to change

constantly. Hence, any stability analysis of distributed algorithms for such realistic situa-

tions should consider time-delays in the network and changing network topologies.

The authors in Foschini and Miljanic (1993) proposed a power control algorithm, the

now well known Foschini-Miljanic (FM) algorithm, that provides distributed on-line power

control of wireless networks with user-specific Signal-to-Interference-and-Noise-Ratio (SINR)

requirements. Furthermore, this algorithm yields the minimum transmitter powers that

satisfy these requirements.

Previous work

As we shall see, this study will involve switched positive systems where the states are

delayed. Systems with time-delays naturally occur in many applications and have been

studied extensively over the past few decades, see for instance the book by Lewis and

Anderson (1980); Hale and Lunel (1993); Hennet and Tarbouriech (1997); Haddad and

Chellaboina (2004); Hövel (2010) and the book by Mahmoud (2010).

In the context of switched systems, various types of delays are usually considered, in

particular single, constant delays (Li et al., 2009) or multiple but constant delays (Sun

et al., 2008; Liu et al., 2008; Ding and Shu, 2010). The recent result by (Sun et al., 2008)

discusses switched systems with time-varying time-delays, but focuses on finding stabilising

switching laws and hence does not cover the arbitrary switching case. Concerning the

Foschini-Miljanic algorithm, it was recently shown in Charalambous et al. (2008) that it is

globally asymptotically stable for arbitrarily large but constant time-delays, and the article

did not consider time changing network topologies.

Contributions

In this section, making use of recent advancements in positive linear systems and in partic-

ular Theorem 3.2 from Chapter 3, we consider both the effects of time-varying delays and

changing network topologies (in other words, arbitrary switching). For that we present a

new theoretical result concerning the stability of such systems. This result is then used

to show that the Foschini-Miljanic algorithm is globally asymptotically stable even un-

der those harder, more realistic conditions, provided a condition similar to Theorem 3.2

is satisfied. Our results are of practical importance when designing wireless networks in

changing environments, as is typically the case for CDMA networks.

Structure

The remainder of this application section is structured as follows: Section 6.1.2 provides

some helpful mathematical preliminaries. Then, we introduce the channel model used
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for modelling the wireless communications as well as the Foschini-Miljanic power control

algorithm. In Section 6.1.4, a stability condition is derived for the Foschini-Miljanic algo-

rithm, showing its stability under arbitrary switching and time-varying delays. Finally, an

example as well as some concluding remarks are given.

6.1.2 Mathematical preliminaries

In what follows, we will establish the mathematical framework for our study and give a

useful result on positive systems that is needed to prove our later results. We shall deviate

slightly form our usual notation in that the variable t now denotes the (continuous) time

variable, so that x(t) is the value of x at time time. Subscripts are either used to index

subsystems in a switched system, to indicate different delayed states, or to denote specific

switching instants. In general, it should be clear from context and the explanations we

give when defining new variables as two what the index is referring to.

We shall consider the following type of linear system with m different delayed states

whose time-delays are time-varying:

ẋ(t) = Ax(t) +

m
∑

k=1

Bkx
(

t− τk(t)
)

, t ≥ 0 (6.1a)

x(t) = ϕ(t) � 0, t ∈ [−τ̄ , 0] (6.1b)

where x(t) ∈ R
n
≥0, A ∈ R

n×n is a Metzler matrix, Bk ∈ R
n×n
≥0 are non-negative matrices

for all k = 1, . . . ,m, ϕ(·) is a bounded, piecewise continuous vector function and the delays

τk(t) are assumed to satisfy:

Assumption 6.1 (Bounded time-delays)

All the k = 1, . . . ,m time-varying time-delays τk(t) are bounded, piecewise continuous

functions in t, satisfying

0 ≤ τk(t) ≤ τ̄k ≤ τ̄ for all t ≥ 0 (6.2)

where τ̄ = maxk{τ̄k}.

Comments Systems of the type (6.1) are referred to as delay differential equations or

functional differential equations; an extensive overview over such systems can be found in

Hale and Lunel (1993); Kuang (1993); Diekmann et al. (1995).

Furthermore, while for most practical applications piecewise continuity of both the

initial condition function ϕ(·) and the time-delays τk(t) will suffice, all results will in fact

hold for locally Lebesgue integrable functions, Rudin (1976); Rami (2009).

Recall that a dynamical system is said to be positive if its state trajectories remain in

the positive orthant for all t ≥ 0 (provided that the initial condition is positive). Thanks
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to A being Metzler and the Bk being non-negative, it is easy to show that the system

above is indeed positive, see for instance Rami (2009).

We can now present a useful result on switched positive systems with time-varying

time-delays that are based on (6.1), where both the system matrix A and delay matrices

Bk switch arbitrarily (but not infinitely fast). Given N constituent subsystems we make

the common assumption that the switching instants are defined in all the real time axes

and that infk(tk+1 − tk) > 0, where tk+1 and tk are two consecutive switching instants, so

that the switching rule has no accumulation points.

The following theorem states that the existence of a common linear co-positive Lya-

punov function v(x) = cTx with c ≻ 0 for all un-delayed modes of the system is sufficient

to guarantee the asymptotic stability of the system for bounded time-varying delays and

arbitrary switching.

Theorem 6.1 (Stability of switched positive linear systems with time-varying delays)

Consider the switched positive system with time-varying time-delays for t ≥ 0

ẋ(t) = Aσ(t)x(t) +
m
∑

k=1

Bk,σ(t)x
(

t− τk(t)
)

(6.3a)

x(t) = ϕ(t) � 0, t ∈ [−τ̄ , 0] (6.3b)

where x(t) ∈ R
n
≥0, σ : R → {1, . . . , N} is some (piecewise constant and left-continuous)

switching signal (defined in all the real time axes and with infk(tk+1 − tk) > 0, where

tk+1 and tk are two consecutive switching instants), Ai ∈ R
n×n are Metzler and Bk,i ∈

R
n×n
≥0 are non-negative matrices, i = 1, . . . , N , and the delays τk(t) are assumed to satisfy

Assumption 6.1. If there exists a strictly positive vector c such that

cT

(

Ai +

m
∑

k=1

Bk,i

)

≺ 0, ∀i = 1, . . . , N (6.4)

then system (6.3) is asymptotically stable.

Proof The full proof of this theorem is given in Zappavigna et al. (2011). To give a

rough outline, the main idea of the proof is to make use of certain monotonicity and or-

der preserving properties exhibited by these systems and their counterparts with constant

time-delays. The switched system is examined between each two consecutive switching

instants and it is shown that it decreases exponentially in each of these time intervals,

from which overall stability can then be deduced.

Comment Note that with the assumptions of the theorem, system (6.3) will also remain

positive throughout time.

Now, given this result, the question would be how to check for the existence of such Lya-

punov function. From the third chapter, recall Theorem 3.2 which provided a (necessary
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and sufficient) test for the existence of a common linear co-positive Lyapunov function.

The following corollary is just a slight reformulation of that theorem in order to fit the

current setting, reproduced here mainly for convenience:

Corollary 6.1 (CLCLF existence)

Given N Metzler matrices Ai and m ·N non-negative matrices Bk,i, then there exists

a strictly positive vector c ≻ 0 such that cT (Ai +
∑m

k=1 Bk,i) =: cTÃi ≺ 0 ∀i = 1, . . . , N

if and only if Ãs(Ã1, . . . , ÃN ) is Hurwitz for all s ∈ Sn,N .

Proof See Theorem 3.2 on page 41.

6.1.3 Wireless communications

Having laid out some necessary mathematical groundwork, let us now present a model of

the wireless communications and later the famous Foschini-Miljanic power control algo-

rithm.

Channel model

We consider a network in which the links are unidirectional and each node is supported

by an omnidirectional antenna. The link quality is measured by the Signal-to-Interfer-

ence-and-Noise-Ratio (SINR). Let S and R denote all transmitters and receivers in the

network, respectively. In a network with n communication pairs (n = |S| = |R|), the

channel gain on the link between transmitter i ∈ S and receiver j ∈ R is denoted by g(ij)

and incorporates the mean path-loss as a function of distance, shadowing and fading, as

well as cross-correlations between signature sequences. All the g(ij) are positive (since all

nodes are equipped with omnidirectional antennae) and can take values in the range (0, 1].

Without loss of generality, we assume that the intended receiver of transmitter i is also

indexed by i. The power level used by transmitter i is denoted by p(i), and ν(i) denotes the

variance of thermal noise at the receiver i, which is assumed to be an additive Gaussian

noise.

The interference power at the ith receiver consists of both the interference caused by

all the other transmitters in the network
∑

j 6=i g
(ji)p(j) and the thermal noise ν(i) in node

i’s receiver. That means the SINR at the receiver i is

SINR(i) =
g(ii)p(i)

∑

j 6=i g
(ji)p(j) + ν(i)

(6.5)

Due to the unreliability of the wireless links, it is necessary to ensure Quality of Service

(QoS) in terms of the SINR in wireless networks. That is, a transmission from transmitter i

to its corresponding receiver is successful (error-free) if the SINR at the receiver with

respect to that transmission is greater than or equal to the capture ratio γ(i), which depends
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Figure 6.1: Illustration of a wireless ad-hoc network with 5 communication pairs. The
channel gains for each pair {Si → Ri} is shown as well as the interference caused
by S1 on the other four receivers.

on the modulation and coding characteristics of the radio. In other words, it is required

that

g(ii)p(i)
∑

j 6=i g
(ji)p(j) + ν(i)

≥ γ(i) (6.6)

Inequality (6.6) describes the QoS requirement of a communication pair (i, i) while a trans-

mission takes place. After manipulation, (6.6) becomes

pi ≥ γ(i)





∑

j 6=i

g(ji)

g(ii)
p(j) +

νi
g(ii)



 (6.7)

In matrix form, for a network consisting of n communication pairs, this can be written as

p � ΓZp+ η (6.8)

where we define pT =
(

p(1) . . . p(n)
)

; Γ = diag
{

γ(i)
}

; z(ij) = g(ji)/g(ii) if i 6= j, zero

otherwise; and ηT =
(

η(1) . . . η(n)
)

with η(i) = γ(i)ν(i)/g(ii). Finally, letting C := ΓZ,

(I−C)p � η (6.9)

We note that C has strictly positive off-diagonal elements which implies that it is

irreducible. By the Perron-Frobenius Theorem (Horn and Johnson, 1985) we then have

that the spectral radius of C is a simple eigenvalue, while the corresponding eigenvector is

positive elementwise. A necessary and sufficient condition for existence of a non-negative

solution to inequality (6.9) for every positive vector η is that (I − C)−1 exists and is

non-negative. However, (I − C)−1 � 0 if and only if the spectral radius ρ(C) < 1, or,

equivalently, (C − I) is Hurwitz (since (C − I) is Metzler), see Horn and Johnson (1991).
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The Foschini-Miljanic power control algorithm

The Foschini-Miljanic (FM) algorithm is given by the following distributed power update

formula Foschini and Miljanic (1993):

dp(i)(t)

dt
= κ(i)



−pi(t) + γ(i)





∑

j 6=i

g(ji)

g(ii)
p(j)(t) +

ν(i)

g(ii)







 (6.10)

where κ(i) > 0 denote the proportionality constants and γ(i) denote the desired SINR. It

is assumed that each node i has only knowledge of the interference at its own receiver.

In matrix form, for a given network configuration this yields

ṗ(t) = −K(I−C)p(t) + η (6.11)

Since the transmitter uses measurements from its intended receiver, delays are inevitably

introduced into the system for a number of reasons such as processing time (coding/decod-

ing), propagation delays and availability of the channel for transmission. Consequently, a

realistic analysis of the algorithm must consider, time-varying delays:

dp(i)(t)

dt
= κ(i)



−p(i)(t) + γ(i)





∑

j 6=i

g(ji)

g(ii)
p(j)
(

t− τ (j)(t)
)

+
ν(i)

g(ii)







 (6.12)

where we assume that τ (i)(t) satisfy Assumption 6.1. In matrix form this can be written

as

ṗ(t) = −Kp(t) +K

(

n
∑

k=1

Bkp
(

t− τk(t)
)

+ η

)

(6.13)

where K = diag
{

κ(i)
}

, and b
(ij)
k is zero if j = k or i 6= k, or equal to γ(k)g(ji)/g(kk)

otherwise. Note that
∑n
k=1 Bk = C.

Assuming feasibility of the solution, and defining x(t) = p∗− p(t) to describe the

deviation from the desired power levels p∗ = (I−C)−1η ≻ 0 in order to satisfy (6.9), then

the stability of (6.13) is equivalent to and can be assessed by study of the following system:

ẋ(t) = −Kx(t) +

n
∑

k=1

KBkx
(

t− τk(t)
)

(6.14)

for which it is easy to see that the origin is the equilibrium. If its initial condition is non-

negative (which can be guaranteed by starting from all zero power levels) then (6.14) defines

a positive system as the diagonal matrix −K is Metzler and the KBk are non-negative.

6.1.4 Main results

Our main result states the following: In some situations all the possible variations in the

gain matrix may be known a priori, and thus there is a finite number of configurations
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that characterise the possible configuration of the system. In such situations, the next

theorem provides a sufficient condition for stability of the Foschini-Miljanic algorithm

under time-varying delays and when the topology changes arbitrarily among N different

configurations.

Theorem 6.2 (Stability of the FM-Algorithm)

Consider a set of N different network configurations that are described by matrices

Ci =
∑n
k=1 Bk,i, where i = 1, . . . , N , and let Ai := Ci − I.

If the Aσ(A1, . . . ,AN ) are Hurwitz for all s ∈ Sn,N , then the power control algorithm

(6.13) is asymptotically stable under arbitrary switching (defined in all the real time axes

and with infk(tk+1−tk) > 0, where tk+1 and tk are two consecutive switching instants), for

any time-varying delays τk(t) satisfying Assumption 6.1, for any initial states pi(0) ≥ 0,

and for any proportionality constants κ(i) > 0.

Proof By construction, all Ai are Metzler matrices. Aσ(A1, . . . ,AN ) being Hurwitz for

all s ∈ Sn,N is a necessary and sufficient condition, according to Corollary 6.1 to say that

there exists a positive vector c ≻ 0 such that cT (−I+
∑n
k=1 Bk,i) ≺ 0 for all i. This

again also means that since K is a diagonal matrix with strictly positive entries, then

c̃T(−K +
∑n

k=1 KBk,i) ≺ 0 for all i, where c̃T = cTK−1 ≻ 0.

By Theorem 6.1, comparing (6.14) to (6.3), this is sufficient to guarantee stability. �

Comment As we mentioned earlier, Theorem 6.2 may also be formulated in terms of

feasibility of suitably defined linear programming problem. One such program might be

for example: Find a vector c ≻ 0 such that cT
[

A1 . . . AN − I
]

≺ 0.

6.1.5 Example

To illustrate the theoretical result presented by Theorem 6.2, we now consider a three
dimensional model consisting of three modes such that the above stability condition is
fulfilled. It is given by the following matrices

C1=







0 0.18 0.23

0.31 0 0.04

0.22 0.12 0






, C2=







0 0.35 0.15

0.40 0 0.45

0.37 0.53 0






, C3=







0 0.36 0.61

0.47 0 0.28

0.71 0.26 0






(6.15)

From Theorem 6.2, if for all s ∈ S3,3 the matrices Cs(C1,C2,C3) have a spectral

radius less than one then the power control algorithm (6.13) is asymptotically stable under

arbitrary switching. In the example here, indeed the largest spectral radius over all matrices

maxs
{

ρ
(

Cs(C1,C2,C3)
)}

≃ 0.985 < 1 (corresponding to the permutation s = (3, 2, 3))

and thus the resulting system would be asymptotically stable under arbitrary switching.
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Figure 6.2: Simulation of the switched network represented by the matrices in (6.15). The
plot shows the evolution of the deviation from the desired power levels p(i)∗,σ(t). The
switching sequence σ(t) is also shown with the dash-dotted line (that is, if σ(t) = 1
then the network is represented by matrix C1, and so on).

Figure 6.2 above confirms this. It shows the results from a simulation run, plotting

the deviations from the desired power levels ∆p(i)(t) := p
(i)
∗,σ(t) − p(i)(t) as a function of

time for each of the three states, where p(i)∗,k denotes the desired power level of the ith

state in the kth subsystem. The switched system used was based on the above matrices,

where the time-varying delays have been simulated with different sinusoidal generators (of

the type τ(t) = α sin(βt + γ) + δ) and the switching sequence has been chosen randomly

(it is indicated with the grey dashed line in the plot). As suggested earlier, the system

was initialised with zero power levels. It can be seen that indeed the deviations disappear

asymptotically.

Note that if, for instance, the (1,2) element in the matrix C2 was equal to 0.45 instead

of 0.35, then its spectral radius ρ
([

C
(1)
3 C

(2)
2 C

(3)
3

])

≃ 1.015 which would violate the

stability condition.

These examples conclude our first application that makes use of one of the main results

from Chapter 3 in order to derive conditions under which the Foschini-Miljanic algorithm

is asymptotically stable, in particular in the presence of time-varying delays and changing

network topologies.

∗ ∗ ∗
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6.2 Emissions control in a fleet of Hybrid Vehicles

The second application is inspired by the motivating example from the first chapter. It

has been submitted as a contribution to the Joint 50th IEEE Conference on Decision and

Control and the 2011 European Control Conference, Knorn et al. (2011b).

6.2.1 Introduction

Reducing greenhouse gas emissions as well as emissions of directly harmful gases and par-

ticulates are one of the major challenges of the future. In the European Union for instance,

see Spence et al. (2009), attempts to reduce emissions include schemes to encourage opti-

mum driver behaviour (emissions reducing driving style for instance), more efficient use of

the transport network (traffic management and smart navigation systems to reduce conges-

tion, dedicated lanes for specific vehicle types, real-time information systems for locations

of available parking spaces, etc.), or to modify the transport demand (improved logistics

to reduce commercial traffic, better public transport, more low-polluting vehicles, etc.).

Contributions

In this section, we would like to make a contribution to these efforts by proposing a novel

emissions control scheme that makes use of our cooperative control results from Chapter 4.

In a fleet of Plug-in Hybrid Vehicles (PHEV) we intend to regulate the energy mix used

by the cars (that is whether the car should rely more on electric or combustion based

propulsion) in order to control the fleet-wide emission of greenhouse gases or harmful

particulates.

Structure

In the following, we shall provide some background on the environmental issues that under-

line the need for better emissions control schemes and mention some of the recent technical

developments that should make this possible. We shall then discuss the implementation

of our proposed control scheme and finally give some simulation results that validate our

vision.

6.2.2 Background

Attempts by large cities like London (Mayor of London, 2008) or Berlin (Schoemburg,

2008) to reduce emissions have received much public attention, particularly due to the

direct impact they have on the public’s mobility. They try to either discourage drivers to

take their car into the city centre by charging a significant fee for doing so, or by strictly only

allowing (certified) low-polluting vehicles to enter. While these attempts indeed succeed

in somewhat diminishing the number of vehicles in the typically congested city centres,
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they basically are open-loop schemes that do not use feedback to respond to the actual

situation. Factors like the weather, the time of day, day of the week, or public holidays all

have a significant impact on air quality and green house gas emissions. Another problem is

that although cars become greener and greener, there are more and more cars in circulation

so that the effects of more efficient and less polluting engines is offset by the ever growing

number of cars, Mayor of London (2008).

Research and development in the field of electric vehicles has progressed significantly

in recent years. Hybrid electric vehicles (HEV), which combine a conventional internal

combustion engine (ICE) based propulsion system with an electric engine, were introduced

to the mass market around the early 2000s, and, apart from their economic advantages

in terms of fuel economy and their “green appeal”, a number of additional factors have

led to fast growing sales, Gallagher and Muehlegger (2008). Just to name a few, strong

tax incentives in most countries make a compelling argument for these low-emission ve-

hicles; social preferences and awareness for environmental quality or energy security have

increased; fuel prices can rise and already have risen sharply in the past, with a consis-

tent upward trend over time; most major car manufacturers now offer hybrid cars in their

portfolio, broadening the range of available models from small city cars to big SUVs and

even vans. Nonetheless, consumer adopting rates could still be improved upon, Lane and

Potter (2007).

A new generation of hybrid vehicles are so-called Plug-in Hybrid Vehicles (PHEV).

These cars have a much larger battery than traditional hybrids and are designed to be

charged not only while driving (through regenerative breaking for instance), but more

importantly by means of “plugging” into an external power supply such as a wall socket

when the car is parked. At the current state of the art, this allows the car to drive several

tens of kilometres purely on electric power, hence producing zero local emissions. The

electrical energy, however, still has to be produced somewhere: This can either happen in

a “clean” fashion (such as wind, solar, water or nuclear power based) or a “dirty” fashion

(traditional fossil fuel based power plants). But while the latter also pollute the air and

produce greenhouse gases, the overall emissions and harmful particulates may be filtered

more effectively and, since power plants are usually located far away from urbanised zones,

their pollution does not accumulate in the cities as is the case with traditional, fossil fuel

based transport. Thus, the air quality in densely populated areas — which pose major

health concerns (Friends of the Earth Trust, 1999; Gorham, 2001) — will be improved

either way.

Unfortunately, market adoption of PHEVs is still somewhat slow, mainly due to eco-

nomical reasons and technical limitations of the current battery technology. In short, it

appears that battery technology still needs to improve in order for this class of vehicle to

be economically viable, Axsen et al. (2008). Additionally, very few vehicles currently can

drive farther than 100km in purely electrical mode, and this figure drastically reduces in

cold weather conditions. For that reason, the combustion engine currently serves mainly
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as a range extender, allowing the car to run (as commonly expected) several hundreds of

kilometres — but at the expense of local air pollution.

Battery
Electric motor

Reservoir Combustion
engine

Differential

gears

Figure 6.3: Illustration of a simple parallel drive train configuration in hybrid electric
vehicles.

6.2.3 Controlling emissions, maximising driving distance

Hybrid electric vehicles clearly offer many new and exciting possibilities for urban mobility.

For the first time, cars can be truly context-aware. In principle, it is possible to combine

GPS and engine management unit to enable vehicles to choose where to be most polluting.

For example, it makes eminent sense for a hybrid vehicle to switch to full electric mode

in the neighbourhood of schools or hospitals. In the following application we explore, at a

very high level, a fleet-wide notion of such context awareness. We wish to, in a manner that

is fair, adjust the behaviour of the hybrid electric vehicles such that city-wide pollution

and/or emissions are regulated. Before proceeding, we give a few words on hybrid electric

vehicle fundamentals.

Hybrid vehicles come in several power-train configurations, the most common of which

would be the parallel power-train configuration, illustrated in Figure 6.3 above. In this

set-up, a combustion engine works in conjunction with an electric motor to provide extra

torque, or, particularly in the case of plug-in hybrids, to extend the driving range. An

interesting variation of this basic design idea is the so-called power-split hybrid configu-

ration: It uses power-split devices (such as planetary gear sets combined with additional

clutches) to allow a precise control over the different power paths from the engines to the

wheel. One essentially attempts to decouple the power supply from the power demand by

the driver. The end result is that the two methods of propulsion can either run exclu-

sively or in conjunction (“blended mode”). In other words, it is possible to “mix” the power
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sources and vary between emission-free, all-electric mode (but with very limited range) or

emission-producing combustion-based mode (allowing for much larger driving ranges).

Let us now propose a scheme to manage this trade-off in order to cooperatively regulate

CO2 emissions3 in a fleet of n vehicles, while maximising their overall driving range for a

given level of overall emissions. For that, we shall make the following assumptions:

(i) The participating PHEVs have a parallel power-train configuration that allows arbi-

trary blending between the power output of the combustion engine and the electric

motor.

(ii) The drive train power mixing can described by a convex combination, in other

words the car can seamlessly interpolate between the two extremes (all-electric or

all-combustion).

(iii) The vehicles are equipped with some broadcast-based vehicle-to-vehicle communi-

cation system (such as the proposed 802.11p protocol for Co-operative Awareness

Messages, Bilstrup et al., 2008) that allows each car to broadcast its current emis-

sion level to other cars in the area. The emissions need not be measured in real-time

but could be derived from offline measurements, taking into consideration the cur-

rently used power blend.

(iv) Information about the aggregate CO2 emissions are available to each car. They

could either be measured externally and broadcast to the fleet (through the Traffic

Management Channel for instance, TMC Forum, 2007), or the cars could collec-

tively estimate them through some distributed averaging scheme such as discussed

in Chapter 5.

(v) The emissions control scheme should be fair in the sense that no car should be allowed

to have higher emissions than others.

6.2.4 Implementation

Given these assumptions, this set-up can easily be cast into the framework presented in

Chapter 4.

Let us begin by defining the blending parameter r(i) ∈ [ 0 , 1 ] for each car i that

describes the energy mix used for propulsion. By convention, let r(i) = 0 if the car is

in all-electric mode, and r(i) = 1 if the car is propelled purely by the combustion engine.

This blending parameter would be the “physical state” in our earlier terminology. With the

assumption that the power blending can be described as a convex combination, the utility

functions would then be linear functions that map the interval [ 0 , 1 ] of the blending-

parameter r(i) into the corresponding range of emissions t(i) that vary between 0 (when

3 Note that we use CO2 emissions here only as an example — our scheme can easily be applied to any
other type of emissions.
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in emissions-free all-electric mode) and t̄ (i), the nominal CO2 emissions of the combustion

engine. Specifically,

t(i) = f (i)
(

r(i)
)

= r(i) t̄ (i) (6.16)

as illustrated in Figure 6.4 below.

t = t̄

t = 0
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s
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Figure 6.4: Illustration of the emissions as a function of the power blending parameter.
On the left, the vehicle is in fully electric mode producing no emissions; on the right
it relies completely on its combustion engine and produces the maximum amount of
emissions.

The global function in this setting is simply the sum of all the CO2 emissions, that is

g(r) =

n
∑

i=1

t̄ (i)r(i) (6.17)

The overall objective is to maximise driving range for each car in fair way, given a

certain “budget” of permissible aggregate emissions. Thus, in order to satisfy the fairness

requirement, the emissions between the different cars must be equalised. At the same time,

in order to maximise the driving distance, the cars should rely on their combustion engines

as much as possible.

These two objectives can easily achieved using Algorithm 2 on page 62. In order to

implement the following slightly simplified version of the control law (4.23)

r
(i)
k+1 = r

(i)
k + η̄

(i)
k

∑

j∈N
(i)
k

(

t
(j)
k − t

(i)
k

)

+ µσk (6.18)

we need to calculate suitable gains η̄(i)k and µ. Given the linear / multi-linear nature of

the global- and utility functions involved here, this task is straightforward, and we shall

briefly demonstrate this process for a small fleet with n = 4 cars. Assume the cars have
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nominal emissions t̄ = ( 100 120 140 160 )T, measured in g CO2/kg. Now, recall that the

gains η(ij)k had to satisfy (4.25) on page 63:

η
(ij)
k ≥ ε1 for j ∈ N (i)

k , and
∑

j∈N
(i)
k

η
(ij)
k ≤ 1

d̄(i)
− ε2 (6.19)

which, in the simplified case, means

η̄
(i)
k ≥ ε1, and (n− 1)η̄

(i)
k ≤ 1

d̄(i)
− ε2 (6.20)

for each i = 1, 2, 3, 4. Thanks to the linear / multi-linear nature of the global- and utility

functions, we have d(i) = d̄ (i) = h(i) = h̄ (i) = t̄ (i). Picking ε1 = ε2 = 1.5 · 10−3 and setting

the gains as

η̄
(i)
k =

1− ε2t̄
(i)

|N (i)|t̄(i) for k = 0, 1, . . . (6.21)

it is straightforward to check that both inequalities in (6.20) are satisfied for each i.

Next, we need to set small enough gains µ on the global term so that (4.26) is satisfied.

Using (4.50) on page 65, this yields in the current setting

µ = 2.1 · 10−5 (6.22)

With this example on how to actually implement the emissions control scheme, let us

now present three simulations of this set-up.

6.2.5 Simulations

The following simulations we generated for fleets of n = 4 as well as n = 50. The former

simulates the numerical example we just discussed; the latter uses a much larger fleet with

cars whose emissions are realistically distributed among the different emissions classes

based on currently available CO2 emission statistics, Figure 6.5 on the following page.4

In each case, the topology of the communication graph was changed randomly in each

time step (but so as to always guarantee strong connectedness). For each simulation run,

the agents were initialised to use a 50/50 power mix, that is r(i)k=0 = 0.5 for each i = 1, . . . , n.

From then on, the blending-parameter was modified iteratively based on the update law

presented earlier. In each case, the desired aggregate emissions level g∗ was set to be 25 %

lower than that at time k = 0, thus requiring all the cars in the network to adjust their

energy mix in order to reduce overall emissions by 25 %.

In all the following figures, the first sub-plot shows the evolution over time of the overall

emissions g(rk) (with the desired level g∗ indicated by the dashed line), the next sub-plot

displays the corresponding evolution of the blending-parameters r(i), and the last sub-plot

gives the evolution of the emissions t(i).
4 These statistics give the distribution of emissions produced by “regular” cars among the different EU

emission classes. While the combustion engines found in PHEVs should have lower emission levels than
regular cars we still used this data for lack of emissions statistics for PHEVs.
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A

B

C

D

E

F

G

Emissions class
Fraction
of cars

A (< 120 g CO2/km) 9.3 %

B (120–140 g CO2/km) 45.9 %

C (140–155 g CO2/km) 27.6 %

D (155–170 g CO2/km) 10.4 %

E (170–190 g CO2/km) 4.7 %

F (190–225 g CO2/km) 1.9 %

G (> 225 g CO2/km) 0.2 %

Figure 6.5: Distribution of the fleet’s cars among the different EU emission classes, data
based on statistics from the Department of Transport (2010).

Fleet of 4 cars

The control gains for the first simulation were set as derived above, and the results from the

simulation run are shown in Figure 6.6 on the next page. The plots show that eventually the

global emissions in the first subplot converge to the desired level, and that all cars indeed

equalise their local emissions (third subplot). The detail view on the right shows the first

15 time steps during which consensus on the emissions is quickly reached. From then on,

the agents jointly decrease their blending-parameters as to reduce the overall emissions to

the desired level. The overall view on the left, however, shows that convergence ultimately

can be considered rather slow, which is due to the conservative nature of our results.

To further illustrate this fact, we also ran a second simulation based on the same

network and initial conditions, but this time setting the gain µ̄ (i) 20 times higher than

in the previous case. As shown in Figure 6.7, this resulted in an about 10 times faster

convergence rate.
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(b) Detail view (first 15 time steps)

Figure 6.6: Simulation results for the fleet of 4 cars, gains set in accordance with Theo-
rem 4.2. Left: Full view, right: detail view of the first 15 time steps.
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Figure 6.7: Same network as in Figure 6.6, but the gains µ̄ (i) were set 20 times larger
than in the previous case.

Fleet of 50 cars

Simulating a larger fleet, Figure 6.8 on the following page shows the results for a fleet of

n = 50 cars. The “jumps” in all the sub-plots at times k that are multiples of n− 1 = 49
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are due to the inclusion of the global term in the update rule at those instants. For these

simulations, again a larger gain µ̄ (i) was used.

Note that in all simulations, as expected, some agents use a larger blending-parameter

than others. These would be cars with overall less polluting engines, which means they

are allowed to rely more on their combustion engines. This in turn means that these cars

should be able to drive farther than others, so that their “eco-friendliness” is rewarded with

extended range.

Time step k

t(i)

r(i)

g(r)

0 20 40 60 80 100 120 140 160 180 200

45

75

0

1

2400

3600

Figure 6.8: Fleet of n = 50 cars, gains µ(i)
k set manually.

Comments In the simulations here the update law from Algorithm 2 was used only in its

basic. In a real-world setting, however, one may be required the employ the two extensions

for asynchronous state updates and limited access to the global term.

Also, the control scheme as presented in Chapter 4 requires the states (and utility

values) to be defined for the entire field of real numbers. In the application presented

here, however, both variables are only defined on compact intervals. We thus assume that,

with the blending-parameters all initialised properly, the solution is feasible and does not

drive the parameters beyond their domain of definition. If, however, this was the case, the

blending-parameters would simply saturate in either fully electric or combustion mode.

Lastly, the CO2 emissions of cars are typically strongly dependent on the driving speed

as well as the individual driver’s behaviour — both of which is not taken into account here.

We rather focus on the average emissions that would be produced in typical city traffic.
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Furthermore, the frequency at which new aggregate emissions measurements are provided

determines the rate at which the discrete updates occur.

This concludes our first application of Algorithm 2 which aimed at cooperatively reg-

ulating CO2 emissions in a fleet of plug-in hybrid electric vehicles. Before moving on, we

would like to stress again that we used CO2 emissions purely for illustration purposes, any

kind of emissions (such as the directly harmful respirable dust produced by combustion

engines) or combinations of different emissions may indeed be considered.

∗ ∗ ∗

6.3 Real-world implementation of cooperative control

The last application that we would like to discuss is an actual real-world implementation

of Algorithm 2 (Theorem 4.2 on page 62).

6.3.1 Introduction

All our earlier results were developed with real word implementations in mind, so in order

to see whether indeed our theory can be put into practice, a test and validation program

was jointly developed with Dr. Ronan Farrell and Mr. James Kinsella. Both are with

the Callan Institute here at the National University of Ireland Maynooth, which has great

expertise and resources in electronic, hardware and software systems as well as wireless

communications.

Over the course of one year, thanks to the kind help of Mr. Kinsella a total of six

wireless motes was developed, built and programmed in order to set up a small wireless

network of autonomous agents in which to test our results. Five of the six motes that were

built are shown in Figure 6.9 on the following page.

Contributions and structure

This section briefly describes a validation experiment of our theoretical contributions in

Chapter 4 by developing an actual hardware/software implementation of Algorithm 2 in
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Figure 6.9: The five “regular” motes.

the presence of real-world limitations and problems (in particular, communication failures

and limited hardware capabilities).

In the following, we shall first describe the overall set-up as well as the hardware and

software layout of the wireless units. We then present and analyse the results from two

indicative experiment runs.

6.3.2 Overall setting

Among the six motes built, five were regular nodes that formed the actual multi-agent net-

work. Those nodes were completely autonomous units, in that they were battery powered

and only communicated wirelessly. The sixth mote acted as a master node: It “measured”

and fed back the global term to the network. Additionally, it was used to start off the

experiment and also collect debug information from each of the five regular nodes. This

information consisted of data packets containing the node’s id, physical state and utility

value, and this data was directly relayed to a PC so that the system’s state could be

recorded and displayed in real-time.

The experiments themselves consisted of each node initialising itself with a fictitious

physical state and utility function (as in the simulations in Chapter 4, those functions

were either of linear or quadratic type, cf. Section 4.A.2 on page 81). Then, the consensus

protocol given by Algorithm 2 was run: The nodes broadcast their utility value using their

radios and receive similar broadcasts from neighbouring nodes as well as the master the

global term from node in order to update their own state. The global function used in the

master node was the mean function, that is the master node calculated and fed back the

mean of the physical states of all the nodes. The desired global value was changed several
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times over the course of each experiment in order to demonstrate the network’s ability to

react to and track such changes.

The controller gains were calculated in a similar procedure as presented in the previous

section, but again manually increased by one order of magnitude in order to reduce the

overall run time of the experiments.

Hardware

All the nodes were built on small printed circuit boards (PCB) with the following basic

components:

(i) CPU: Microchip PIC 18LF4550 (8bit, 32KB Flash, 2K RAM, USB)

(ii) Radio: Texas Instruments CC1100 (ultra low power, sub-1 GHz transceiver)

(iii) Power: 3x AA batteries, regulated to 3.3V

(iv) Interface: 2 status LEDs, 1 reset button, serial connector

The master node additionally had a physical USB port wired to the CPU so that it

could be connected to a PC for real-time monitoring of the network’s behaviour.

Software

The software for the motes was written in C/C++ and consists of a simple firmware

to initialise and control the hardware components as well as an algorithmic block which

contains the actual implementation of the consensus algorithm.

Roughly, the software set-up operates as follows (please also refer to the flow charts in

the next two sections). First the master node had to be powered on, then the other nodes.

When a node has finished booting up and is ready for the experiment the begin it was set

to continuously broadcast its initial state to signal its readiness.

The experiment would start when the master node had received the initial states from

all the nodes in the network. At that point, the master node would broadcast a trigger

signal to start the consensus algorithm in each node. In each iteration, the nodes were

programmed to exchange their utility states with each other and update their state accord-

ingly. However, every n − 1 = 4 iterations they were additionally instructed to send out

debugging information directly to the master node (containing their id, physical state and

utility value). This information was required for two purposes: (i) to enable the master

node to calculate the global value and subsequently feed the difference between desired

and actual global value back to the nodes, (ii) to protocol the evolution of the experiment.
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Software layout of master node
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YES

NO

Broadcast
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Software layout of regular node
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r ← r0 and t← f(r0)
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6.3.3 Practical issues

For reasons of simplicity the wireless communications between the nodes were not realised

using one of the established wireless communication protocols. Rather, they were imple-

mented in a straightforward round-robin or time division multiple access (TDMA) fashion.

Simply speaking, this means that the nodes take turns broadcasting. To coordinate this,

first the master node would broadcast the global value. Relative to this broadcast the

different nodes would broadcast with different, fixed delays so that the transmissions are

“staggered out” and collisions are avoided. That way the n − 1 iterations between the

global term updates were performed. At the end of these iterations the nodes would spend

another round broadcasting their debug data packets to the master node. Having received

this data, the master node would then broadcast the new global term and the cycle starts

anew.

In terms of timing, each node’s broadcast window was about 200 ms wide so that the

n − 1 iterations usually took around 4 seconds. Then, roughly another second was spent

transmitting the debug data packets. Finally, the master node had 200 ms to broadcast the

updated global term. Hence, all in all, the network would perform about 11 to 12 global

term updates per minute, provided no data packets were lost (which cause some global

term updates not to be performed).

1
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4

5

(a) Experiment 1

1

2

3

4

5

(b) Experiment 2

Figure 6.10: The static communication networks used in the two experiments (master
node not shown).

Due to technical reasons and limited space for the experiment, every node would pick

up every other node’s broadcast. This would result in a rather uninteresting, complete

graph. We thus manually added an exclusion list to each node which instructed it to
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ignore broadcasts from certain nodes. With this method, we created two different network

topologies,5 which are shown in Figure 6.10 on the facing page (master node not included).

Furthermore, due to the unreliable nature of the nodes and wireless communications,

many data packets were dropped. This shall become evident in the somewhat “non-smooth”

evolution of the states (as compared to the computer simulations from Chapter 4). How-

ever, this effect will always be encountered in real-world applications and thus allows us

to demonstrate the robustness of our work to such communication problems.

Lastly, the microprocessors only used finite precision arithmetics and the states could

only assume integer values. While we did not explicitly took this into account in the present

work, it shows that our algorithm is also robust with regards to such perturbations.

6.3.4 Results from experiments

We shall now discuss the results from the two experiment runs. In the first experiment,

the network was using utility functions of quadratic type. Initially, the target value for

the global value was set to 750, which means that the network’s physical states had to be

adjusted so that their mean would equal 750. The master node was instructed to auto-

matically switch the desired global value to 400 once the networks states have converged

(that is, when the precision of the arithmetic-logic-unit was reached). This occurred about

11 minutes into the experiment.

Figure 6.11 on the next page was generated using the data recorded during the first

experiment, that is the debug-data received from the master node and the global value

that it had calculated and broadcast to the nodes. The first sub-plot shows the difference

between actual and desired global value, which starts off positive since the average value

of the physical states (shown in the second sub-plot) is clearly below 750. As the physical

states increase, the difference starts to disappear. At the same time, the utility values in the

thirds subplot approach each other quickly and eventually converge to perfect consensus.

Then, after about 11 minutes, the target global value was changed to a different, lower

value, which meant that the physical states had to generally decrease in order to meet it

— which can indeed be observed in the plots.

A similar picture is painted in Figure 6.12. This time, the utility functions were of

linear type, and the global value changed three times throughout the experiment (from

200 to 600 to 400). Again, the network behaves as desired.

Comment As in the emissions control application earlier, gains were set higher than

required by the theorem. This was particularly important in this application as the system

was somewhat unstable, with nodes more or less randomly crashing. The gain on the

global term was double from the first to the second experiment, which clearly resulted in

faster convergence times.

5 In order to limit the complexity of the code we did not change the network topology over the course
of an experiment.
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Figure 6.11: Evolution of the deviation from the desired global value (which changed
at t =10:50 min), the physical states and the utility values of the five nodes in the
network. Utility functions: quadratic-type, global function: mean of physical states.
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Figure 6.12: Linear-type utility functions, desired global value changed at t =1:40 min
and t =6:40min.
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This concludes our real-world validation of Algorithm 2. The results from the experi-

ments certainly support our claims of the robustness of our proposed cooperative control

scheme. We shall now close this application chapter and move on to draw some final

conclusions of the work presented in this thesis.
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Conclusion

In this last chapter we summarise the contributions of this thesis and suggest
possible future directions for continued research in the relevant areas.

Chapter contents

7.1 Summary

7.2 Future directions

7.1 Summary

In the first chapter we gave several examples to motivate the work carried out in this

thesis. The first one concerned a transmit power control algorithm for wireless networks.

The famous Foschini-Miljanic algorithm is a distributed control scheme that is known to

be robust to various types of perturbations, in particular time-varying time-delays of the

states. We noted that switched positive systems theory can be used to explain this robust-

ness and give conditions under which stability can be guaranteed. The second example

suggested a municipal emissions control scheme for a fleet of cars. The idea was to regu-

late each participating car’s driving speed in order to control on a global level the overall

fleet emissions while also equalising the local emissions among cars (fairness). The final

motivational example concerned a topology control problem in wireless sensor networks.

The objective was to find a decentralised algorithm which regulates the broadcast power in

each node so that a certain overall connectivity level was maintained in the network while,

at the same time, balancing battery lifetimes among all the nodes in order to maximise

the network’s lifetime without node failures (due to insufficient battery power). All three

examples or variations thereof were later revisited in Chapters 5 and 6.

Chapter 2 then reviewed literature from related fields of research, in particular the areas

of switched positive systems, large-scale systems, decentralised control, and cooperation in

networked multi-agent systems.

The third chapter was concerned with deriving easily verifiable stability conditions for

switched positive linear systems, in particular by giving conditions for the existence of

145
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common linear co-positive Lyapunov functions. We noted that these switched systems

may represent a networked of interacting scalar systems which switches between different

interaction topologies. As we noted in the literature review, existence of any type of com-

mon Lyapunov functions, in general, is sufficient for exponential stability of a switched

linear system. In that context, the first result that we presented dealt with a switched

positive linear system where the switching could not occur arbitrarily, but depended di-

rectly on the states: Given a state space covered with (possibly overlapping) convex cones

each of which was associated with one of the constituent subsystems, the system was only

allowed to switch to whichever subsystem(s) that was (were) associated with the cone(s)

the system was in at that point. Our result then stated that existence of a common linear

co-positive Lyapunov function is equivalent to the cone generated by all the columns of all

the constituent system matrices not intersecting the positive orthant. As this condition

is somewhat hard to test in general, we presented a reformulation of this result that per-

mitted easy checking by running a simple feasibility test provided the cones encountered

were polyhedral. Attention was then turned to the arbitrary switching case, for which a

necessary and sufficient existence condition was found that consisted of an extended Hur-

witz condition on all the system matrices. These results were complemented by remarks

concerning the insights gained from the algebraic condition, their applicability to discrete

time systems, and a number of possible applications for them.

The following chapter, Chapter 4, discussed a novel cooperative control paradigm for

networked systems. To achieve this, a global feedback loop was added to the network,

relating back the aggregate network behaviour to each agent. To formalise the discussion,

we began by defining more concretely the oft-encountered system setting that we had

already briefly presented in the first chapter. We then derived and proved convergence

of three basic algorithms that allowed the network to cooperatively achieve a common

goal given certain local and global constraints. In terms of the existing literature on

consensus and coordination, our results can be interpreted as enabling an implicit and

constrained consensus to be found in a fully decentralised setting, running on directed and

time-changing communication network topologies. Of the three algorithms, the first one

assumed perfect knowledge of all the system parameters, in particular (the inverse of) the

utility functions; the second algorithm was much less demanding in that only bounds on

the slopes of global- and utility functions were needed; the third algorithm was even more

general, even allowing for dynamics to occur in the utility functions. Extensions to these

algorithms additionally enabled them to be deployed in even more demanding settings,

such as situations where synchronous state updates cannot be guaranteed, and where the

global value may not be accessible to all the nodes. However, for all these results one key

assumption was made: the global term had to be known by at least one node. This could

be satisfied either by some external entity providing it to the nodes, or by the network

measuring or estimating it itself.
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One such situation where the global value can indeed be estimated in a decentralised

fashion was discussed in the subsequent Chapter 5. Hence, in comparison to the previous

chapters, an identification component was added to the problem. The main contributions

of the chapter solved the problem posed in the second motivational example: A wireless

networks where the level of connectivity of the communication network needs to be reg-

ulated, as there are several algorithms that evolve over such networks whose convergence

rate directly depends on the algebraic connectivity level. As proxy for the connectivity

level we used the second largest eigenvalue in magnitude of the stochastic normalisation of

the adjacency matrix. This value is closely related to the traditionally used Fiedler eigen-

value of the graph Laplacian, but it has the advantage that it is also defined for directed

graphs. Additionally, a fully decentralised scheme can be devised that allows this value to

be estimated locally in each node — one of the main contributions of the chapter. Once

obtained, this estimate was then used to inform a decentralised control scheme that locally

adjusted the network topology to successfully regulate the overall connectivity to some

desired level, even if the network can only assume a discrete number of different topologies

and hence connectivity levels.

The sixth chapter then gave three further applications for our main results, in part

following up on some of the motivational examples. The first application discussed con-

cerned the Foschini-Miljanic power control algorithm for wireless networks. Our arbitrary

switching result from Chapter 3 was used to provide sufficient conditions for the algo-

rithm’s stability under time-varying time-delays and arbitrarily changing network topolo-

gies. Next, we suggested an emissions control scheme for a fleet of plug-in hybrid electrical

vehicles that was based on our second cooperative control algorithm proposed in the fourth

chapter. This application is similar to the third motivational example as it proposes a de-

centralised scheme to regulate (in a fair way) the total emissions of the cars participating

in the scheme. Lastly, the third application we considered was a real-world implementa-

tion of the same cooperative control scheme, validating our claims that the algorithm can

indeed be implemented, even with all the imperfections and limitations that are inherent

in real-world applications.

7.2 Future directions

In closing, let us suggest a few different directions that the present work may be extended

in.

Switched systems in general are very hard to analyse, as reflected by the fact that the

vast majority of results in this area only concern linear systems. It is thus not surprising

that there are still many fundamental questions that remain unanswered in the non-linear

case. Similarly, our contributions from Chapter 3 also hold only for linear positive sys-

tems. Unfortunately, the linearity assumption in relation to positive systems in particular is
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somewhat problematic: Most real world systems are non-linear and the classical approach

of linearising these system would inevitably destroy any positivity properties (as lineari-

sation yields states that describe the deviation from the operating point and these error

coordinates may thus assume negative values). Hence, there is a clear need for non-linear

results in the field of positive systems and positive switched systems in particular.

Nonetheless, in some cases the linearity assumption may be justified; one example for

this was encountered in the Foschini-Miljanic application we discussed earlier. In this ap-

plication, the need for results covering switched positive systems with time-delays became

apparent. Consequently, further work further investigating the effects of delays on the

system’s stability would certainly be of benefit.

While the results of Chapter 4 are certainly promising, a number of open questions

remain and should be the subject of further investigations. For instance, the gain µ in the

second and third algorithm may become very small in larger networks, and there is much

experimental evidence that the bounds presented here tend to be rather conservative. This

can be explained, in part, by the fact that for sufficiently connected graphs (and not patho-

logical worst-case scenarios such as, for example, directed n-cycles) significantly less than

n− 1 multiplications in (4.36) on page 64 would be required to produce strictly positive S̄

matrices — which in turn means that the corresponding smin value in (4.46) on page 65

would be much larger and ultimately allows µ to be increased. One possible future exten-

sion of our work that accounts for unlikely topological effects is via a stochastic formulation

of this problem. Here, expected quantities are controlled rather than deterministic ones.

Also, in the second and third algorithm, the nodes incorporate the global term in

their state updates every M steps. A number of simulations and tests have shown that

the system may well include the global term in every time step and thus achieve faster

convergence. In the future, it would be interesting to see if a proof can be developed that

allows the inclusion of the global term in every time step, as this may speed up overall

convergence.

Other open questions in a problem setting as encountered here concern the effect of

communication delays, quantisation effects when using finite precision arithmetics (for

instance when implementing our algorithms on digital processors without floating point

precision, as was the case in Section 6.3) or the effect of nodes joining or leaving the

network. These issues may possibly be addressed using ideas from previous (unconstrained

consensus) literature such as Kashyap et al. (2007); Nedić and Ozdaglar (2010).

Furthermore, the present work only considers a single physical state and single utility

value associated with each node; in a more general setting, nodes could have two or more

states associated with them. This may lead to a MIMO-like formulation of our problem.

Concerning the graph topology control problem, although examples are presented to

illustrate the efficacy and promises of this approach, there are also a number of open

questions that remain to be resolved. The most important of these concerns the fact that
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the relationship between the network states and the eigenvalue locus is not known exactly

a priori (and thus the required bounds κ for Theorems 5.2 and 5.3 on page 105). However,

this should not be a problem for most practical applications where the graph setup is

roughly known in advance, since then estimates of those parameters could be obtained

off-line using simulations of typical graphs. Another approach would be to attempt to

estimate them in an adaptive fashion as the consensus algorithm evolves.

Furthermore, another interesting problem to study would be to attempt to reproduce

our results without the assumption of separation of time scales between the estimation-

and control parts in the overall scheme (Section 5.4 on page 97). Indeed, some preliminary

experiments have shown that estimation- and control iterations may be interlaced (that

is, individual estimation and control updates may simply be alternated), without affecting

the system’s stability or convergence to the correct solution.

Another extension to the chapter’s work may be to not consider “binary” adjacency

matrices (where the entries are either 1 or 0) but rather matrices where those elements

would transition smoothly from 1 to 0 as nodes get further apart from each other and loose

their communication link. In that case, we suspect that the eigenvalue locus will become

a smooth function of the nodes’ connection radii.

Lastly, as in the previous chapter, further investigations may also consider communica-

tion delays, quantisation effects or the impact of using only finite precision arithmetics on

the control scheme, as well as the quantitative effect on the eigenvalue locus when agents

join or leave the network.

Moving on to the applications chapter, future directions for the Foschini-Miljanic appli-

cation may include finding additional stability conditions for constantly changing network

topologies where it is not possible to identify finitely many different configurations. Further,

a comparison of our results with the stability conditions of the undelayed Foschini-Miljanic

algorithm could lead to a better understanding of the impact of delays on the overall algo-

rithm. Lastly, on a more abstract level, it would be of great interest to determine whether

the delay-independent stability properties exhibited by positive systems are due to their

monotonicity or positive properties.

In the work on fleet-wide emissions control, future studies should consider the effect of

nodes joining and leaving the network, how effects like saturation of the states could be

incorporated directly into the mathematical framework, and ideally derive tighter bounds

on the maximum permissible gain for the global term (as the bounds presented here are

only sufficient for stability, and we have shown in the simulations that they can be increased

significantly without compromising stability). Also, it would be interesting to attempt a

real-life implementation of our suggested application.

Our last application using the purpose built wireless motes also raised a range of ques-

tions. For instance, what is the effect of quantisation in the states on the cooperative

control algorithms, as caused by real-world, finite precision arithmetics? We suspect that
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quantisation will not be able to destabilise the system; similar to the quantisation effects

encountered in the graph connectivity problem, one cannot expect to converge asymptoti-

cally to the theoretical solution, but rather only to a neighbourhood of it.

In overall conclusion, the cooperative control algorithms should present a new paradigm

for cooperative control. However, with the gains set strictly according to the rather con-

servative, theoretical limits, convergence rates are much too slow for actual applications.

Hence, further work deriving tighter bounds for these gains is imperative.







Notation

n Scalars; lowercase letters

x Vectors; lowercase bold letters (always supposed to be column vectors, if not trans-
posed), or elementwise in parentheses:

(

x(1) x(2) . . . x(n)
)T

A Matrices; uppercase bold letters, or elementwise in brackets:
[

a(11) a(12)

a(21) a(22)

]

S Sets; uppercase calligraphic letters

x̄ Typically an upper bound to the variable x

x Typically a lower bound to the variable x

x∗ Typically the “desired” value of x

xk The value of variable x at time k, sometimes also denoted x(k)

I Identity matrix of suitable dimensions

en The nth unit vector of suitable dimension

0 Zero matrix of suitable dimensions

R The field of real numbers

R
n The n-dimensional Euclidean space

R
n
≥0 The closed positive orthant of the R

n

R
n
>0 The open positive orthant of the R

n

R
n×n The space of n× n matrices with real entries
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Anatolĭı A. Martyntıuk, V. Miladzhanov, and M. Muminov. Stability of large-scale discrete sys-
tems under structural perturbations. Ukrainian Mathematical Journal, 48(10):1533–1545, 1996.

DOI : 10.1007/BF02377822

Oliver Mason and Robert N. Shorten. Some results on the stability of positive switched linear sys-
tems. In CDC’04: Proceedings of the 43th IEEE Conference on Decision and Control, volume 5,
pages 4601–4606, Atlantis, Paradise Island, Bahamas, Dec. 2004. DOI : 10.1109/CDC.2004.1429509

Oliver Mason and Robert N. Shorten. On linear copositive Lyapunov functions and the stability of
switched positive linear systems. IEEE Transactions on Automatic Control, 52(7):1346–1349,
Jul. 2007. DOI : 10.1109/TAC.2007.900857

Oliver Mason and Mark Verwoerd. Observations on the stability properties of cooperative systems.
Systems & Control Letters, 58(6):461–467, Jun. 2009. DOI : 10.1016/j.sysconle.2009.02.009

Oliver Mason, Vahid Bokharaie, and Robert N. Shorten. Stability and D-stability for switched
positive systems. In POSTA’09, pages 101–109. DOI : 10.1007/978-3-642-02894-6_10

Vladimir M. Matrosov. Method of Lyapunov-vector functions in feedback systems. Automation
and Remote Control, 33(9):1458–1469, Sept. 1972.

Vladimir M. Matrosov. The method of vector Lyapunov functions in analysis of composite systems
with distributed parameters. Automation and Remote Control, 34(1):1–6, Jan. 1973.

Mayor of London. Central London Congestion Charging, Impacts Monitoring — Sixth Annual
Report. Transport for London., Jul. 2008. http://goo.gl/xAsfa

Mehran Mesbahi and Fred Y. Hadaegh. Formation flying control of multiple spacecraft via
graphs, matrix inequalities, and switching. In CCA’99: Proceedings of the 1999 IEEE Interna-
tional Conference on Control Applications, volume 2, pages 1211–1216, Kohala Coast-Island of
Hawai’i, HI, USA, Aug. 1999. DOI : 10.1109/CCA.1999.801145

Lloyd A. Metzler. Stability of multiple markets: The Hicks conditions. Econometrica, 13(4):
277–292, Oct. 1945. http://www.jstor.org/stable/1906922

Sean P. Meyn. Control Techniques for Complex Networks. Cambridge University Press, New York,
NY, USA, 2008.

Anthony N. Michel. Stability analysis of stochastic large-scale systems. Zeitschrift für Angewandte
Mathematik und Mechanik, 55(2):113—-123, 1975a. DOI : 10.1002/zamm.19750550207



BIBLIOGRAPHY 171

Anthony N. Michel. Stability analysis of stochastic composite systems. IEEE Transactions on
Automatic Control, 20(2):246–250, Apr. 1975b. DOI : 10.1109/TAC.1975.1100903

Anthony N. Michel. Scalar vs. vector Lyapunov functions in stability analysis of large scale
systems: Raprochement. In CDC’77: Proceedings of the 16th IEEE Conference on Decision
and Control, including the 16th Symposium on Adaptive Processes and A Special Symposium,
volume 16, pages 1262–1266, New Orleans, LA, USA, Dec. 1977. DOI : 10.1109/CDC.1977.271763

Anthony N. Michel. On the status of stability of interconnected systems. IEEE Transactions on
Automatic Control, 28(6):639–653, Jun. 1983. DOI : 10.1109/TAC.1983.1103292

Anthony N. Michel. Recent trends in the stability analysis of hybrid dynamical systems. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(1):120–134,
Jan. 1999. DOI : 10.1109/81.739260

Anthony N. Michel and Richard K. Miller. Qualitative Analysis of Large Scale Dynamical Systems,
volume 134 of Mathematics in Science and Engineering. Academic Press, New York, NY, USA,
1977. http://books.google.ie/books?id=-Md2CcjIGWgC

Anthony N. Michel and Richard K. Miller. Qualitative analysis of interconnected systems described
on Banach spaces: Well posedness, instability and lagrange stability. Zeitschrift für Angewandte
Mathematik und Mechanik, 58(5):289–300, 1978. DOI : 10.1002/zamm.19780580507

Anthony N. Michel and David W. Porter. Analysis of discontinuous large-scale systems: Stability,
transient behaviour and trajectory bounds. International Journal of Systems Science, 2(1):
77–95, Jul. 1971. DOI : 10.1080/00207727108920179

Anthony N. Michel and David W. Porter. Stability analysis of composite systems. IEEE Trans-
actions on Automatic Control, 17(2):222–226, Apr. 1972. DOI : 10.1109/TAC.1972.1099952

Anthony N. Michel, Richard K. Miller, and Wang Tang. Lyapunov stability of interconnected
systems: Decomposition into strongly connected subsystems. IEEE Transactions on Circuits
and Systems, 25(9):799–809, Sept. 1978. DOI : 10.1109/TCS.1978.1084537

Anthony N. Michel, Richard K. Miller, and Boo Hee Nam. Stability analysis of interconnected
systems using computer generated lyapunov functions. IEEE Transactions on Circuits and
Systems, 29(7):431–440, Jul. 1982. DOI : 10.1109/TCS.1982.1085181

Richard K. Miller and Anthony N. Michel. Ordinary Differential Equations. Dover Publications,
New York, NY, USA, 2007. http://books.google.ie/books?id=YznLGAAACAAJ

Alexander P. Molchanov and Evgenii S. Pyatnitskii. Criteria of asymptotic stability of differential
and difference inclusions encountered in control theory. Systems & Control Letters, 13(1):59–64,
Jul. 1989. DOI : 10.1016/0167-6911(89)90021-2

Luc Moreau. Stability of multiagent systems with time-dependent communication links. IEEE
Transactions on Automatic Control, 50(2):169–182, Feb. 2005. DOI : 10.1109/TAC.2004.841888

Takehiro Mori, Norio Fukuma, and Michiyoshi Kuwahara. Simple stability criteria for single and
composite linear systems with time delays. International Journal of Control, 34(6):1175–1184,
Dec. 1981. DOI : 10.1080/00207178108922590



172 BIBLIOGRAPHY

Yoshihiro Mori, Takehiro Mori, and Yasuaki Kuroe. A solution to the common Lyapunov function
problem for continuous-time systems. In CDC’97: Proceedings of the 36th IEEE Conference on
Decision and Control, volume 4, pages 3530–3531, Dec. 1997. DOI : 10.1109/CDC.1997.652397

A. Stephen Morse. Supervisory control of families of linear set-point controllers—Part I: Exact
matching. IEEE Transactions on Automatic Control, 41(10):1413–1431, Oct. 1996.

DOI : 10.1109/9.539424

Peter J. Moylan. Matrices with positive principal minors. Linear Algebra and its Applications, 17
(1):53–58, 1977. DOI : 10.1016/0024-3795(77)90040-4

Peter J. Moylan and David J. Hill. Stability criteria for large-scale systems. IEEE Transactions
on Automatic Control, 23(2):143–149, Apr. 1978. DOI : 10.1109/TAC.1978.1101721

Richard M. Murray. Recent research in cooperative control of multivehicle systems. Journal of
Dynamic Systems, Measurement, and Control, 129(5):571–583, Sept. 2007.

DOI : 10.1115/1.2766721

Roderick Murray-Smith and Robert N. Shorten, editors, Roderick Murray-Smith and Robert N.
Shorten. Switching and Learning in Feedback Systems: European Summer School on Multi-
Agent Control, Maynooth, Ireland, Sept. 2003. Springer, Berlin, Germany.

http://books.google.ie/books?id=dcXiy-2R4pAC

Arthur G. O. Mutambara. Decentralized Estimation and Control for Multisensor Systems. CRC
Press, Inc., Boca Raton, FL, USA, 1998. http://books.google.ie/books?id=Z1YfUGkG8poC

Max Müller. Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichun-
gen. Mathematische Zeitschrift, 26:619–645, 1926. http://goo.gl/5rxrb

Kumpati S. Narendra and Jeyendran Balakrishnan. A common Lyapunov function for stable LTI
systems with commuting A-matrices. IEEE Transactions on Automatic Control, 39(12):2469–
2471, Dec. 1994. DOI : 10.1109/9.362846

Kumpati S. Narendra and Robert N. Shorten. Hurwitz stability of metzler matrices. IEEE
Transactions on Automatic Control, 55(6):1484–1487, Jun. 2010. DOI : 10.1109/TAC.2010.2045694

Kumpati S. Narendra and James H. Taylor. Frequency domain criteria for absolute stability.
Electrical science series. Academic Press, New York, NY, USA, 1973.

http://books.google.ie/books?id=J-9qQgAACAAJ

Angelia Nedić and Asuman Ozdaglar. Convergence rate for consensus with delays. Journal of
Global Optimization, 47(3):437–456, Jul. 2010. DOI : 10.1007/s10898-008-9370-2

Sergey G. Nersesov and Wassim M. Haddad. On the stability and control of nonlinear dynamical
systems via vector Lyapunov functions. IEEE Transactions on Automatic Control, 51(2):203–
215, Feb. 2006. DOI : 10.1109/TAC.2005.863496

Torsten Norvig. Consensus of subjective probabilities: A convergence theorem. The Annals of
Mathematical Statistics, 38(1):221–225, Feb. 1967. http://www.jstor.org/stable/2238885



BIBLIOGRAPHY 173

Yuzo Ohta. Qualitative analysis of nonlinear quasi-monotone dynamical systems described by
functional-differential equations. IEEE Transactions on Circuits and Systems, 28(2):138–144,
Feb. 1981. DOI : 10.1109/TCS.1981.1084959

Reza Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE
Transactions on Automatic Control, 51(3):401–420, Mar. 2006. DOI : 10.1109/TAC.2005.864190

Reza Olfati-Saber. Distributed kalman filtering for sensor networks. In CDC’07: Proceedings of
the 46th IEEE Conference on Decision and Control, pages 5492–5498, New Orleans, LA, USA,
Dec. 2007. DOI : 10.1109/CDC.2007.4434303

Reza Olfati-Saber and Richard M. Murray. Consensus protocols for networks of dynamic agents.
In ACC’03: Proceedings of the 2003 American Control Conference, volume 2, pages 951–956,
Denver, CO, USA, Jun. 2003. http://www.cds.caltech.edu/~murray/preprints/om03-acc.pdf

Reza Olfati-Saber and Richard M. Murray. Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Transactions on Automatic Control, 49(9):1520–1533, Sept.
2004. DOI : 10.1109/TAC.2004.834113

Reza Olfati-Saber and Jeff S. Shamma. Consensus filters for sensor networks and distributed
sensor fusion. In CDC-ECC ’05: Proceedings of the Joint 44th IEEE Conference on Decision
and Control and the 2005 European Control Conference, pages 6698–6703, Dec. 2005.

DOI : 10.1109/CDC.2005.1583238

Reza Olfati-Saber, J. Alex Fax, and Richard M. Murray. Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1):215–233, Jan. 2007.

DOI : 10.1109/JPROC.2006.887293

Tatsushi Ooba and Yasuyuki Funahashi. Stability robustness for linear state space models: A
Lyapunov mapping approach. Systems & Control Letters, 29(4):191–196, January 1997a.

DOI : 10.1016/S0167-6911(96)00068-0

Tatsushi Ooba and Yasuyuki Funahashi. Two conditions concerning common quadratic Lyapunov
functions for linear systems. IEEE Transactions on Automatic Control, 42(5):719–722, May
1997b. DOI : 10.1109/9.580888

Tatsushi Ooba and Yasuyuki Funahashi. On a common quadratic lyapunov function for widely
distant systems. IEEE Transactions on Automatic Control, 42(12):1697–1699, Dec. 1997c.

DOI : 10.1109/9.650019

Tatsushi Ooba and Yasuyuki Funahashi. On the simultaneous diagonal stability of linear discrete-
time systems. Systems & Control Letters, 36(3):175–180, Mar. 1999.

DOI : 10.1016/S0167-6911(98)00082-6

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals & Systems. Prentice-Hall
signal processing series. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2nd edition, 1996.

http://books.google.ie/books?id=QuNgQgAACAAJ

Antonis Papachristodoulou and Stephen Prajna. Robust stability analysis of nonlinear hybrid
systems. IEEE Transactions on Automatic Control, 54(5):1035–1041, May 2009.

DOI : 10.1109/TAC.2009.2017155



174 BIBLIOGRAPHY

Lynne E. Parker. ALLIANCE: an architecture for fault tolerant multirobot cooperation. IEEE
Transactions on Robotics and Automation, 14(2):220–240, Apr. 1998. DOI : 10.1109/70.681242

Philippos Peleties and Raymond DeCarlo. Asymptotic stability of m-switched systems using
Lyapunov-like functions. In ACC’91: Proceedings of the 1991 American Control Conference,
pages 1679–1684, Boston, MA, USA, Jun. 1991. http://goo.gl/W4hiT

Philippos Peleties and Raymond DeCarlo. Asymptotic stability of m-switched systems using
Lyapunov functions. In CDC’92: Proceedings of the 31st IEEE Conference on Decision and
Control, volume 4, pages 3438–3439, Dec. 1992. DOI : 10.1109/CDC.1992.371213

Mathew Penrose. Random Geometric Graphs, volume 5 of Oxford Studies in Probability. Oxford
University Press, New York, NY, USA, Jun. 2003. http://books.google.ie/books?id=M38e7nPGSCsC

Oskar Perron. Die Stabilitätsfrage bei Differentialgleichungen. Mathematische Zeitschrift, 32:703–
728, 1930. DOI : 10.1007/BF01194662

Karel Perutka. A survey of decentralized adaptive control. In Meng Joo Er, editor, New Trends in
Technologies: Control, Management, Computational Intelligence and Network Systems, chap-
ter 1. InTech, Rijeka, Croatia, Nov. 2010. http://goo.gl/ccegb

Stefan Pettersson and Bengt Lennartson. Stability and robustness for hybrid systems. In CDC’96:
Proceedings of the 35th IEEE Conference on Decision and Control, volume 2, pages 1202–1207,
Kobe, Japan, Dec. 1996. DOI : 10.1109/CDC.1996.572653

Stefan Pettersson and Bengt Lennartson. Lmi for stability and robustness of hybrid systems. In
ACC’97: Proceedings of the 1997 American Control Conference, volume 3, pages 1714–1718,
Albuquerque, NM, USA, Jun. 1997. DOI : 10.1109/ACC.1997.610877

Stefan Pettersson and Bengt Lennartson. Hybrid system stability and robustness verification
using linear matrix inequalities. International Journal of Control, 75(16–17):1335–1355, 2002.

DOI : 10.1080/0020717021000023762

A. A. Piontkovskii and L. D. Rutkovskaya. Investigation of stability theory problems by the vector
Lyapunov function method. Automation and Remote Control, 10:1422–1429, 1967.

Giordano Pola, Jan Willem Polderman, and Maria D. Di Benedetto. Balancing dwell times for
switching linear systems. In MTNS’04: Proceedings of the 16th International Symposium on
Mathematical Theory of Network and Systems, Leuven, Belgium, Jul. 2004. http://goo.gl/vpYm0

Andrzej Polański. On infinity norms as Lyapunov functions for linear systems. IEEE Transactions
on Automatic Control, 40(7):1270–1274, Jul. 1995. DOI : 10.1109/9.400479

Andrzej Polański. Lyapunov function construction by linear programming. IEEE Transactions
on Automatic Control, 42(7):1013–1016, Jul. 1997. DOI : 10.1109/9.599986

Andrzej Polański. On absolute stability analysis by polyhedral Lyapunov functions. Automatica,
36(4):573–578, 2000. DOI : 10.1016/S0005-1098(99)00180-6

David W. Porter and Anthony N. Michel. Input-output stability of time-varying nonlinear mul-
tiloop feedback systems. IEEE Transactions on Automatic Control, 19(4):422–427, Aug. 1974.

DOI : 10.1109/TAC.1974.1100582



BIBLIOGRAPHY 175

POSTA’03: Proceedings of the first Multidisciplinary International Symposium on Positive Sys-
tems: Theory and Applications, volume 294 of Lecture Notes in Control and Information Sci-
ences, Rome, Italy, Aug. 2003. Springer-Verlag Berlin / Heidelberg.

http://books.google.ie/books?id=jMDXlc-hC4IC

POSTA’06: Proceedings of the first Multidisciplinary International Symposium on Positive Sys-
tems: Theory and Applications, volume 341 of Lecture Notes in Control and Information Sci-
ences, Grenoble, France, Aug. 2006. Springer-Verlag Berlin / Heidelberg.

http://books.google.ie/books?id=jMDXlc-hC4IC

POSTA’09: Proceedings of the third Multidisciplinary International Symposium on Positive Sys-
tems: Theory and Applications, volume 389 of Lecture Notes in Control and Information Sci-
ences, Valencia, Spain, Sept. 2009. Springer-Verlag Berlin / Heidelberg.

http://books.google.ie/books?id=pykXyhh1S3kC

Stephen Prajna and Antonis Papachristodoulou. Analysis of switched and hybrid systems - beyond
piecewise quadratic methods. In ACC’03: Proceedings of the 2003 American Control Confer-
ence, volume 4, pages 2779–2784, Denver, CO, USA, Jun. 2003. DOI : 10.1109/ACC.2003.1243743

Ram Ramanathan and Regina Rosales-Hain. Topology control of multihop wireless networks
using transmit power adjustment. In INFOCOM’00: Proceedings of the 19th Annual Joint
Conference of the IEEE Computer and Communications Societies., volume 2, pages 404–413,
Tel Aviv, Israel, Mar. 2000. DOI : 10.1109/INFCOM.2000.832213

M. Ait Rami. Stability analysis and synthesis for linear positive systems with time-varying delays.
In POSTA’09, pages 205–215. DOI : 10.1007/978-3-642-02894-6_20

M. Ait Rami and Fernando Tadeo Rico. Controller synthesis for positive linear systems with
bounded controls. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(2):151–
155, Feb. 2007. DOI : 10.1109/TCSII.2006.886888

Robert D. Rasmussen and Anthony N. Michel. On vector Lyapunov functions for stochastic
dynamical systems. IEEE Transactions on Automatic Control, 21(2):250–254, Apr. 1976a.

DOI : 10.1109/TAC.1976.1101172

Robert D. Rasmussen and Anthony N. Michel. Stability of interconnected dynamical systems
described on Banach spaces. IEEE Transactions on Automatic Control, 21(4):464–471, Aug.
1976b. DOI : 10.1109/TAC.1976.1101302

Wei Ren and Randal W. Beard. Formation feedback control for multiple spacecraft via virtual
structures. IEEE Proceedings of Control Theory and Applications, 151(3):357–368, May 2004.

DOI : 10.1049/ip-cta:20040484

Wei Ren and Randal W. Beard. Consensus seeking in multiagent systems under dynamically
changing interaction topologies. IEEE Transactions on Automatic Control, 50(5):655–661, May
2005. DOI : 10.1109/TAC.2005.846556

Wei Ren, Randal W. Beard, and Ella M. Atkins. A survey of consensus problems in multi-agent
coordination. In ACC’05: Proceedings of the 2005 American Control Conference, volume 3,
pages 1859–1864, Jun. 2005. DOI : 10.1109/ACC.2005.1470239

Craig Reynolds. Boids (flocks, herds, and schools: a distributed behavioral model), Sept. 2001.
Website. http://www.red3d.com/cwr/boids/



176 BIBLIOGRAPHY

Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model. In SIG-
GRAPH’87: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pages 25–34, Anaheim, CA, USA, Jul. 1987. http://goo.gl/BFfxO

R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, USA, 1970.
http://books.google.ie/books?id=wj4Fh4h_V7QC

Howard H. Rosenbrock. A Lyapunov function with applications to some nonlinear physical sys-
tems. Automatica, 1(1):31–53, 1963. DOI : 10.1016/0005-1098(63)90005-0

Shigui Ruan. Connective stability of discontinuous large scale systems. Journal of Mathematical
Analysis and Applications, 160(2):480–484, 1991. DOI : 10.1016/0022-247X(91)90320-Y

Walter Rudin. Principles of Mathematical Analysis. International series in pure and applied
mathematics. McGraw-Hill, New York, NY, USA, third, revised edition, 1976.

http://books.google.ie/books?id=kwqzPAAACAAJ

Björn S. Rüffer, Christopher M. Kellett, and Peter Dower. On copositive Lyapunov functions for
a class of monotone systems. In MTNS’10: Proceedings of the 19th International Symposium
on Mathematical Theory of Network and Systems, Budapest, Hungary, Jul. 2010.

http://goo.gl/lMxw2

Andrew P. Sage. Methodology for Large-Scale Systems. McGraw-Hill, New York, NY, USA, 1977.
http://books.google.ie/books?id=Om5RAAAAMAAJ

Irwin W. Sandberg. A frequency-domain condition for the stability of feedback systems containing
a single time-varying nonlinear element. Bell System Technical Journal, 43(4):1601–1608, May
1964. http://goo.gl/ItIxq

Irwin W. Sandberg. On the stability of interconnected systems. In ISCAS’78: Proceedings of the
1978 IEEE Symposium on Circuits and Systems, pages 228–231, New York, NY, USA, May
1978.

Nils R. Sandell, Jr., Pravin P. Varaiya, Michael Athans, and Michael G. Safonov. Survey of
decentralized control methods for large scale systems. IEEE Transactions on Automatic Control,
23(2):108–128, Apr. 1978. DOI : 10.1109/TAC.1978.1101704

Paolo Santi. Topology Control in Wireless Ad Hoc and Sensor Networks. John Wiley & Sons,
Inc., Chichester, UK, Sept. 2005. http://books.google.ie/books?id=ZAtbAAAACAAJ

Roger W. H. Sargent and Arthur W. Westerberg. SPEED-UP (simulation programme for the
economic evaluation and design of unsteady-state processes) in chemical engineering design.
Transactions of the Institution of Chemical Engineers, 42:190–197, 1964.

Luca Schenato and Giovanni Gamba. A distributed consensus protocol for clock synchronization
in wireless sensor network. In CDC’07: Proceedings of the 46th IEEE Conference on Decision
and Control, pages 2289–2294, New Orleans, LA, USA, Dec. 2007. DOI : 10.1109/CDC.2007.4434671

Jen Schoemburg. Germany introduces environmental zones. Frontiers in Ecology and the Envi-
ronment, 6(1):5, Feb. 2008. DOI : 10.1890/1540-9295(2008)6[4:D]2.0.CO;2



BIBLIOGRAPHY 177

Henrik Schulze and Christian Lüders. Theory and applications of OFDM and CDMA: Wideband
wireless communications. John Wiley & Sons, Ltd., Chichester, UK, 2005.

http://books.google.ie/books?id=PzWSwn9gHWEC

George R. Sell. Stability theory and Lyapunov’s second method. Archive for Rational Mechanics
and Analysis, 14:108–126, Jan. 1963. 10.1007/BF00250695

M. Erol Sezer and Dragoslav D. Šiljak. Nested ǫ-decompositions and clustering of complex systems.
Automatica, 22(3):321–331, May 1986. DOI : 10.1016/0005-1098(86)90030-0

M. Erol Sezer and Dragoslav D. Šiljak. Nested ǫ-decompositions of linear systems: Weakly coupled
and overlapping blocks. SIAM Journal on Matrix Analysis and Applications, 12(3):521–533, Jul.
1991. DOI : 10.1137/0612037

M. Erol Sezer and Dragoslav D. Šiljak. Decentralized control. In William S. Levine, editor, The
Control Handbook, chapter 49. CRC Press, Boca Ranton, FL, USA, 1996.

http://books.google.ie/books?id=2WQP5JGaJOgC

Hong Shi, Long Wang, and Tianguang Chu. Virtual leader approach to coordinated control of
multiple mobile agents with asymmetric interactions. Physica D: Nonlinear Phenomena, 213
(1):51–65, 2006. DOI : 10.1016/j.physd.2005.10.012

Robert N. Shorten and Fiacre Ó. Cairbre. On the stability of pairwise triangularisable and related
switching systems. In ACC’01: Proceedings of the 2001 American Control Conference, volume 3,
pages 1882–1883, Jun. 2001a. DOI : 10.1109/ACC.2001.946011

Robert N. Shorten and Fiacre Ó. Cairbre. A proof of global attractivity for a class of switching
systems using a non-quadratic Lyapunov approach. IMA Journal of Mathematical Control and
Information, 18(3):341–353, Sept. 2001b. DOI : 10.1093/imamci/18.3.341

Robert N. Shorten and Fiacre Ó. Cairbre. A new methodology for the stability analysis of pairwise
triangularizable and related switching systems. IMA Journal of Applied Mathematics, 67(5):
441–457, Oct. 2002. DOI : 10.1093/imamat/67.5.441

Robert N. Shorten and Kumpati S. Narendra. On the stability and existence of common Lya-
punov functions for stable linear switching systems. In CDC’98: Proceedings of the 37th IEEE
Conference on Decision and Control, volume 4, pages 3723–3724, Dec. 1998.

DOI : 10.1109/CDC.1998.761788

Robert N. Shorten and Kumpati S. Narendra. Necessary and sufficient conditions for the exis-
tence of a common quadratic lyapunov function for M stable second order linear time-invariant
systems. In ACC’00: Proceedings of the 2000 American Control Conference, volume 1, pages
359–363, Chicago, IL, USA, Jun. 2000. DOI : 10.1109/ACC.2000.878913

Robert N. Shorten and Kumpati S. Narendra. Necessary and sufficient conditions for the existence
of a common quadratic Lyapunov function for a finite number of stable second order linear
time-invariant systems. International Journal of Adaptive Control and Signal Processing, 16
(10):709–728, Dec. 2002. DOI : 10.1002/acs.719

Robert N. Shorten and Kumpati S. Narendra. On common quadratic Lyapunov functions for pairs
of stable LTI systems whose system matrices are in companion form. IEEE Transactions on
Automatic Control, 48(4):618–621, Apr. 2003. DOI : 10.1109/TAC.2003.809795



178 BIBLIOGRAPHY

Robert N. Shorten, Fabian Wirth, and Douglas J. Leith. A positive systems model of tcp-like
congestion control: asymptotic results. IEEE/ACM Transactions on Networking, 14(3):616–
629, Jun. 2006. DOI : 10.1109/TNET.2006.876178

Robert N. Shorten, Fabian Wirth, Oliver Mason, Kai Wulff, and Christopher King. Stability
criteria for switched and hybrid systems. SIAM Review, 49(4):545–592, Nov. 2007.

DOI : 10.1137/05063516X

Dragoslav D. Šiljak. Stability of large-scale systems under structural perturbations. IEEE Trans-
actions on Systems, Man, and Cybernetics, 2(5):657–663, Nov. 1972.

DOI : 10.1109/TSMC.1972.4309194

Dragoslav D. Šiljak. Large-Scale Dynamic Systems: Stability and Structure. North-Holland Pub-
lishing Co., New York, NY, USA, 1978. http://books.google.ie/books?id=O_tQAAAAMAAJ

Dragoslav D. Šiljak. Complex dynamical systems: Dimensionality, structure and uncertainty.
Large Scale Systems In Information And Decision Technologies, 4(3):279–294, Jun. 1983.

http://goo.gl/sCM4D

Dragoslav D. Šiljak. Decentralized Control of Complex Systems, volume 184 of Mathematics in
science and engineering. Academic Press, San Diego, CA, USA, 1991.

http://books.google.ie/books?id=8LQUfp7ns40C

Dragoslav D. Šiljak. Decentralized control and computations: Status and prospects. Annual
Reviews in Control, 20:131–141, May 1996. DOI : 10.1016/S1367-5788(97)00011-4

Dragoslav D. Šiljak and Dusan M. Stipanović. Robust stabilization of nonlinear systems: The
LMI approach. Mathematical Problems in Engineering, 6(5):461–493, 2000.

DOI : 10.1155/S1024123X00001435

Dragoslav D. Šiljak and Aleksandar I. Zečević. Large-scale and decentralized systems. In Wiley
Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Inc., 1999.

DOI : 10.1002/047134608X.W1021

Dragoslav D. Šiljak and Aleksandar I. Zečević. Control of large-scale systems: Beyond decentral-
ized feedback. Annual Reviews in Control, 29(2):169–179, Oct. 2005.

DOI : 10.1016/j.arcontrol.2005.08.003

Herbert A. Simon and Albert Ando. Aggregation of variables in dynamical systems. Econometrica,
29:111–138, 1961.

Sahjendra N. Singh, Phil Chandler, Corey Schumacher, Siva Banda, and Meir Pachter. Nonlinear
adaptive close formation control of unmanned aerial vehicles. Dynamics and Control, 10(2):
179–194, Apr. 2000. DOI : 10.1023/A:1008348025564

Lesław Socha. The asymptotic stochastic stability in large of the composite stochastic systems.
Automatica, 22(5):605–610, 1986. DOI : 10.1016/0005-1098(86)90071-3

Selim Solmaz, Robert N. Shorten, and Fiacre Ó. Cairbre. A global attractivity result for a class
of switching discrete-time systems. In ACC’07: Proceedings of the 2007 American Control
Conference, pages 3462–3463, New York, NY, USA, Jul. 2007. DOI : 10.1109/ACC.2007.4282444



BIBLIOGRAPHY 179

Yoon Song, M. Seetharama Gowda, and Gomatam Ravindran. On some properties of P-matrix
sets. Linear Algebra and its Applications, 290(1–3):237–246, Mar. 1999.

DOI : 10.1016/S0024-3795(98)10228-8

Angela Spence, Siebe Turksma, Ab Schelling, Thomas Benz, Jean-Pierre Medevielle, Ian McCrae,
Juhani Jaaskelainen, and Eva Boethius. Methodologies for assessing the impact of ITS applica-
tions on CO2 emissions. Technical report, EC-METI Task Force, Mar. 2009. http://goo.gl/L0roR

Rade Stanojević and Robert N. Shorten. Fully decentralized emulation of best-effort and processor
sharing queues. In SIGMETRICS’08: Proceedings of the 2008 ACM International Conference
on Measurement and Modeling of Computer Systems, pages 383–394, Annapolis, MD, USA,
Jun. 2008. ACM. DOI : 10.1145/1375457.1375501

Rade Stanojević and Robert N. Shorten. Load balancing vs. distributed rate limiting: An uni-
fying framework for cloud control. In ICC’09: Proceedings for the 2009 IEEE International
Conference on Communications, pages 1091–1096, Dresden, Germany, Jun. 2009a.

DOI : 10.1109/ICC.2009.5199141

Rade Stanojević and Robert N. Shorten. Generalized distributed rate limiting. In IWQoS’09:
Proceedings of 17th IEEE International Workshop on International Workshop on Quality of
Service, pages 1–9, Charleston, SC, USA, Jul. 2009b. DOI : 10.1109/IWQoS.2009.5201389

Donald V. Steward. On an approach to techniques for the analysis of the structure of large systems
of equations. SIAM Review, 4(4):321–342, Oct. 1962. DOI : 10.1137/1004088

Donald V. Steward. Partitioning and tearing systems of equations. SIAM Journal: Series B,
Numerical Analysis, 2(2):345–365, 1965. DOI : 10.1137/0702028

Gilbert W. Stewart. Introduction to matrix computations. Computer science and applied mathe-
matics. Academic Press, New York, NY, USA, 1973.

http://books.google.ie/books?id=awHvAAAAMAAJ

Dusan M. Stipanović and Dragoslav D. Šiljak. Connective stability of discontinuous interconnected
systems via parameter dependent Lyapunov functions. In ACC’01: Proceedings of the 2001
American Control Conference, volume 6, pages 4189–4196, Arlington, VA, USA, Jun. 2001.

DOI : 10.1109/ACC.2001.945633

Xi-Ming Sun, Wei Wang, Guo-Ping Liu, and Jun Zhao. Stability analysis for linear switched
systems with time-varying delay. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 38(2):528–533, Apr. 2008. DOI : 10.1109/TSMCB.2007.912078

Malur K. Sundareshan and Mathukumalli Vidyasagar. L2-stability of large-scale dynamical sys-
tems: Criteria via positive operator theory. IEEE Transactions on Automatic Control, 22(3):
396–399, Jun. 1977. DOI : 10.1109/TAC.1977.1101536

Adarsha Swarnakar, Horacio Jose Marquez, and Tongwen Chen. Robust stabilization of nonlinear
interconnected systems with application to an industrial utility boiler. Control Engineering
Practice, 15(6):639–654, 2007. DOI : 10.1016/j.conengprac.2006.11.004

Hiroyuki Tamura and Tsuneo Yoshikawa. Large-Scale Systems Control and Decision Making.
Electrical and Computer Engineering. Marcel Dekker, New York, NY, USA, 1990.

http://books.google.ie/books?id=x6SeW76GvhQC



180 BIBLIOGRAPHY

Wang Tang, Anthony N. Michel, and Harry W. Hale. On structure and stability of interconnected
dynamical systems. IEEE Transactions on Circuits and Systems, 27(5):391–405, May 1980.

DOI : 10.1109/TCS.1980.1084828

Herbert G. Tanner, Ali Jadbabaie, and George J. Pappas. Stable flocking of mobile agents part I:
Fixed topology. In CDC’03: Proceedings of the 42nd IEEE Conference on Decision and Control,
volume 2, pages 2010–2015, Maui, HI, USA, Dec. 2003a. DOI : 10.1109/CDC.2003.1272910

Herbert G. Tanner, Ali Jadbabaie, and George J. Pappas. Stable flocking of mobile agents part
II: Dynamic topology. In CDC’03: Proceedings of the 42nd IEEE Conference on Decision and
Control, volume 2, pages 2016–2021, Maui, HI, USA, Dec. 2003b. DOI : 10.1109/CDC.2003.1272911

Henri Theil. Linear Aggregation of Economic Relations. North-Holland Publishing Co., Amster-
dam, The Netherlands, 1954. http://books.google.ie/books?id=yco6AAAAIAAJ

Wiley E. Thompson. Exponential stability of interconnected systems. IEEE Transactions on
Automatic Control, 15(4):504–506, Aug. 1970. DOI : 10.1109/TAC.1970.1099507

TMC Forum. What is Traffic Message Channel (TMC)? Website, Aug. 2007. http://goo.gl/Xfnvx

H. Tokumaru, N. Adachi, and T. Amemiya. On the input-output stability of interconnected
systems. Syst. Ctrl. (J. Japan Ass. Automat. Contr. Eng.), 17:121–125, 1973.

John N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. Ph.D. thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Computer
Science, Cambridge, MA, USA, Nov. 1984. http://goo.gl/BUReu

John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic
Control, 31(9):803–812, Sept. 1986. DOI : 10.1109/TAC.1986.1104412

Peter Uetz, Loic Giot, Gerard Cagney, Traci A. Mansfield, Richard S. Judson, James R. Knight,
Daniel Lockshon, Vaibhav Narayan, Maithreyan Srinivasan, Pascale Pochart, Alia Qureshi-
Emili, Ying Li, Brian Godwin, Diana Conover, Theodore Kalbfleisch, Govindan Vijayadamodar,
Meijia Yang, Mark Johnston, Stanley Fields, and Jonathan M. Rothberg. A comprehensive
analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 403:623–627, Feb.
2000. DOI : 10.1038/35001009

Frank Uhlig. A recurring theorem about pairs of quadratic forms and extensions: A survey. Linear
Algebra and its Applications, 25:219–237, Jun. 1979. DOI : 10.1016/0024-3795(79)90020-X

Maria Elena Valcher and Paolo Santesso. Reachability properties of single-input continuous-time
positive switched systems. IEEE Transactions on Automatic Control, 55(5):1117–1130, May
2010. DOI : 10.1109/TAC.2010.2045442

Manuela Veloso, Peter Stone, and Kwun Han. The CMUnited-97 robotic soccer team: Perception
and multi-agent control. Robotics and Autonomous Systems, 29(2–3):133–143, Nov. 2000.

DOI : 10.1016/S0921-8890(99)00048-2

Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet. Novel type of
phase transition in a system of self-driven particles. Physical Review Letters, 75(6):1226–1229,
Aug. 1995. DOI : 10.1103/PhysRevLett.75.1226



BIBLIOGRAPHY 181

Mathukumalli Vidyasagar. L2-stability of interconnected systems using a reformulation of the
passivity theorem. IEEE Transactions on Circuits and Systems, 24(11):637–645, Nov. 1977.

DOI : 10.1109/TCS.1977.1084285

Mathukumalli Vidyasagar. New passivity-type criteria for large-scale interconnected systems.
IEEE Transactions on Automatic Control, 24(4):575–579, Aug. 1979.

DOI : 10.1109/TAC.1979.1102092

Mathukumalli Vidyasagar. On the well-posedness of large-scale interconnected systems. IEEE
Transactions on Automatic Control, 25(3):413–421, Jun. 1980. DOI : 10.1109/TAC.1980.1102345

Mathukumalli Vidyasagar. Input-Output Analysis of Large-Scale Interconnected Systems: Decom-
position, Well-Posedness and Stability, volume 29 of Lecture notes in control and information
sciences. Springer-Verlag New York, Inc., New York, NY, USA, 1981.

http://books.google.ie/books?id=Ct2nAAAAIAAJ

Mathukumalli Vidyasagar. Nonlinear systems analysis. Number 42 in Classics in Applied Mathe-
matics. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,
2002. http://books.google.ie/books?id=_JLrm1rRRUIC

Elena Virnik. Analysis of Positive Descriptor Systems. Topics in Systems and Control Theory.
VDM Verlag, Saarbrücken, Germany, 2008. http://books.google.ie/books?id=2M6TNwAACAAJ

Antonio Visioli. Practical PID Control. Advances in Industrial Control. Springer-Verlag, London,
UK, 2006. DOI : 10.1007/1-84628-586-0

Muqiu Wang, Lian Wang, and Xuetang Du. On the decomposition problem of stability for Volterra
integrodifferential equations. Acta Mathematicae Applicatae Sinica (English Series), 8(1):82–
96, 1992. DOI : 10.1007/BF02006075

Paul K. C. Wang. Navigation strategies for multiple autonomous mobile robots moving in forma-
tion. Journal of Robotic Systems, 8(2):177—-195, Apr. 1991. DOI : 10.1002/rob.4620080204

Roger Wattenhofer, Li Li, Paramvir Bahl, and Yi-Min Wang. Distributed topology control for
wireless multihop ad-hoc networks. In INFOCOM’01: Proceedings of the 20th Annual Joint
Conference of the IEEE Computer and Communications Societies, volume 3, pages 1388–1397,
Anchorage, AK, USA, Apr. 2001. DOI : 10.1109/INFCOM.2001.916634

Stein Weissenberger. Piecewise-quadratic and piecewise-linear Lyapunov functions for discontin-
uous systems. International Journal of Control, 10(2):171–180, Aug. 1969.

DOI : 10.1080/00207176908905814

Susan C. Weller and N. Clay Mann. Assessing rater performance without a “gold standard” using
consensus theory. Medical Decision Making, 17(1):71–79, Feb. 1997.

DOI : 10.1177/0272989X9701700108

Jan C. Willems. Dissipative dynamical systems part I: General theory. Archive for Rational
Mechanics and Analysis, 45(5):321–351, 1972. http://goo.gl/VxS1t

Jan C. Willems. Qualitative behavior of interconnected systems. Annals of Systems Research, 3:
61–80, 73.



182 BIBLIOGRAPHY

Robert L. Winkler. The consensus of subjective probability distributions. Management Science,
15(2):B61–B75, Oct. 1968. DOI : 10.1287/mnsc.15.2.B61

Fabian Wirth. A converse Lyapunov theorem for linear parameter-varying and linear switching
systems. SIAM Journal on Control and Optimization, 44(1):210–239, 2005a.

DOI : 10.1137/S0363012903434790

Fabian Wirth. A converse Lyapunov theorem for switched linear systems with dwell times. In
CDC-ECC ’05: Proceedings of the Joint 44th IEEE Conference on Decision and Control and
the 2005 European Control Conference, pages 4572–4577, Seville, Spain, Dec. 2005b.

DOI : 10.1109/CDC.2005.1582883

Bugong Xu. On delay-independent stability of large-scale systems with time delays. IEEE Trans-
actions on Automatic Control, 40(5):930–933, May 1995. DOI : 10.1109/9.384233

Peng Yang, Randy A. Freeman, Geoffrey J. Gordon, Kevin M. Lynch, and Siddhartha S. Srini-
vasa. Decentralized estimation and control of graph connectivity in mobile sensor networks. In
ACC’08: Proceedings of the 2008 American Control Conference, pages 2678–2683, Seattle, WA,
USA, Jun. 2008. DOI : 10.1109/ACC.2008.4586897

Xiao-Song Yang and Guanrong Chen. Limit cycles and chaotic invariant sets in autonomous
hybrid planar systems. Nonlinear Analysis: Hybrid Systems, 2(3):952–957, Aug. 2008. Special
Issue Section: Analysis and Design of Hybrid Systems, Analysis and Design of Hybrid Systems.

DOI : 10.1016/j.nahs.2008.03.004

Hui Ye, A.N. Michel, and Ling Hou. Stability theory for hybrid dynamical systems. IEEE
Transactions on Automatic Control, 43(4):461–474, Apr. 1998. DOI : 10.1109/9.664149

Rama K. Yedavalli and Andrew Sparks. Ultimate boundedness control of linear switched systems
using controlled dwell time approach. In CDC’01: Proceedings of the 40th IEEE Conference on
Decision and Control, volume 3, pages 2490–2495, Orlando, FL, USA, Dec. 2001.

DOI : 10.1109/.2001.980637

Christos A. Yfoulis and Robert N. Shorten. A numerical technique for the stability analysis of
linear switched systems. International Journal of Control, 77(11):1019–1039, Jul. 2004.

DOI : 10.1080/002071704200026963

Xu Yong, Li Jie, Tang Wansheng, Zhang Jianxiong, and Wei Jie. Stability analysis of piecewise
linear Delta operator systems. In ICAL’08: Proceedings of the 2008 IEEE International Con-
ference on Automation and Logistics, pages 1688–1692, Qingdao, China, Sept. 2008.

DOI : 10.1109/ICAL.2008.4636426

David M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, NY,
USA, 1971. http://books.google.ie/books?id=TWoboQnbZtsC

George Zames. On the input-output stability of time-varying nonlinear feedback systems—Part
I: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Transactions
on Automatic Control, 11(2):228–238, Apr. 1966. DOI : 10.1109/TAC.1966.1098316

Jens Zander. Performance of optimum transmitter power control in cellular radio systems. IEEE
Transactions on Vehicular Technology, 41(1):57–62, Feb. 1992. DOI : 10.1109/25.120145



BIBLIOGRAPHY 183

Annalisa Zappavigna, Themistoklis Charalambous, and Florian Knorn. Unconditional stability of
the Foschini-Miljanic algorithm. To appear in Automatica, Mar. 2011. http://goo.gl/o8rKm

Aleksandar I. Zečević and Dragoslav D. Šiljak. A block-parallel newton method via overlapping
epsilon decompositions. SIAM Journal on Matrix Analysis and Applications, 15(3):824–844,
Jul. 1994. DOI : 10.1137/S0895479892229115

Aleksandar I. Zečević and Dragoslav D. Šiljak. A new approach to control design with overlapping
information structure constraints. Automatica, 41(2):265–272, Feb. 2005a.

DOI : 10.1016/j.automatica.2004.09.011

Aleksandar I. Zečević and Dragoslav D. Šiljak. A decomposition-based control strategy for large,
sparse dynamic systems. Mathematical Problems in Engineering, 2005(1):33–48, 2005b.

DOI : 10.1155/MPE.2005.33

Aleksandar I. Zečević and Dragoslav D. Šiljak. Control of Large-Scale Systems Under Information
Structure Constraints. Springer-Verlag New York, Inc., New York, NY, USA, 2010.

http://books.google.ie/books?id=vqweTUANjwYC

Guisheng Zhai and Hai Lin. Controller failure time analysis for symmetric H∞ control systems.
International Journal of Control, 77(6):598–605, 2004. DOI : 10.1080/00207170410001703232

Guisheng Zhai, Bo Hu, Kazunori Yasuda, and Anthony N. Michel. Disturbance attenuation
properties of time-controlled switched systems. Journal of the Franklin Institute, 338(7):765–
779, Nov. 2001. DOI : 10.1016/S0016-0032(01)00030-8

Guisheng Zhai, Bo Hu, Kazunori Yasuda, and Anthony N. Michel. Qualitative analysis of discrete-
time switched systems. In ACC’02: Proceedings of the 2002 American Control Conference,
volume 3, pages 1880–1885, Anchorage, AK, USA, May 2002. DOI : 10.1109/ACC.2002.1023907

Guisheng Zhai, Xuping Xu, Hai Lin, and Anthony N. Michel. Analysis and design of switched
normal systems. Nonlinear Analysis: Theory, Methods & Applications, 65(12):2248–2259, Dec.
2006. DOI : 10.1016/j.na.2006.01.034

Wei Zhang, Alessandro Abate, Jianghai Hu, and Michael P. Vitus. Exponential stabilization of
discrete-time switched linear systems. Automatica, 45(11):2526–2536, Nov. 2009a.

DOI : 10.1016/j.automatica.2009.07.018

Wei Zhang, Alessandro Abate, Michael P. Vitus, and Jianghai Hu. On piecewise quadratic control-
Lyapunov functions for switched linear systems. In CDC-CCC’09: Proceedings of the Joint 48th
IEEE Conference on Decision and Control and 28th Chinese Control Conference, pages 1088–
1093, Dec. 2009b. DOI : 10.1109/CDC.2009.5400642


