
O

T
T
O

-V
O

N
-G

U
E

R

IC
KE-UNIVERSIT

Ä
T

M
A

G
D

E
B

U
R

G

Otto–von–Guericke–Universität Magdeburg

Studienarbeit

Ranking and importance in

complex networks
von

Florian Knorn
(* xxx Dez. 1981 in Berlin)

3. Oktober 2005

Eingereicht an die: Otto–von–Guericke–Universität Magdeburg
Fakultät für Elektrotechnik und Informationstechnik
Institut für Automatisierungstechnik
Universitätsplatz 2
Postfach 4120, 39016 Magdeburg
Deutschland

Prüfer: Prof. Jörg Raisch

Betreuer: Dr. Oliver Mason
Prof. Robert Shorten

Hamilton Institute
National University of Ireland
Maynooth, Co. Kildare
Ireland

Meiner Familie

Table of contents

Outline and objectives vii

Preface ix

Acknowledgments . ix

Declaration of originality . x

Introduction xi

1 Notions from Graph theory 1

1.1 Introduction . 1

1.2 Basic definitions . 1

1.3 Matrices associated with graphs 4

1.4 Characteristic values . 9

2 Random graphs 17

2.1 Introduction . 17

2.2 The Erdös–Rényi Model . 18

2.3 The Watts–Strogatz or “small–world” Model 23

2.4 The Barabási–Albert or “scale–free” Model 28

2.5 Comparison and applications . 33

3 Ranking schemes 39

3.1 Introduction . 39

3.2 Node degrees . 40

3.3 HITS . 40

3.4 PageRank . 46

3.5 Centrality measures . 52

3.6 Damage . 55

4 Robustness 59

4.1 Introduction . 59

4.2 Perturbations . 59

4.3 Measures of deviation . 61

4.4 Quantitative assessment . 65

4.5 Theoretical results . 77

v

vi TABLE OF CONTENTS

5 Application to real data 81
5.1 Introduction . 81

5.2 Examination of the data . 82

5.3 Identifying essentiality . 88

5.4 Robustness of the identification of essentiality 91

Conclusion 95

A Additional theorems 97
A.1 Connectedness and irreducibility 97

A.2 Perron–Frobenius Theorem . 98

B Additional plots 99
B.1 Sensitivity . 99

List of Symbols 109

Bibliography 111

Outline and objectives

In the recent past, there has been enormous interest across a number of research
communities in the analysis of complex networks. One of the major motivations
for this is the importance of such networks in a variety of diverse application areas,
including power systems, the Internet and World Wide Web (WWW), social networks,
transportation networks, food webs and biological networks. Furthermore, it was
recently established in a sequence of papers that the random graph models, introduced
by Erdös and Rényi, traditionally used to model complex networks do not accurately
capture many of the key properties of networks that occur in the real world. This led
to the introduction of several new network models including the small–world model
of Watts and Strogatz (WS) and the scale–free models of Barabási and Albert (BA).
A key issue in the analysis of complex networks in several fields is how to identify
critical or important nodes within a network. One familiar example of this is provided
by the various algorithms developed to rank pages on the WWW in terms of their
importance or relevance to a specific search query; the most famous such algorithm
being the PageRank algorithm which underpins the Google search engine. A novel
interesting application of similar ideas has arisen in the analysis of biological networks
such as protein–protein interaction and transcriptional networks, where algorithms
for the identification of critical genes or proteins have potential applications in drug
design.

This project has a number of objectives. Firstly, the student should become fa-

miliar with the basics of Graph Theory and the main statistics used to characterize

graph structure as well as the major algorithms used to rank pages on the WWW;

namely the HITS algorithm of Kleinberg and the PageRank algorithm of Brin and

Page. Specifically, the student should be able to implement these algorithms in Mat-

lab or an appropriate programming language, and explain clearly the theory behind

the algorithms and their convergence properties. The student should also be able

to describe a number of other measures of importance in networks including dam-

age, status and excentricity. Secondly, the student should survey the recent models

of complex networks, be able to describe and quantify the main properties of these

models, and should produce programs to generate and analyze the major network

models introduced in recent years. The third strand of the project relates to the

application of ranking algorithms to networks subject to uncertainty. This is of par-

ticular relevance in biological applications where network data is always considerably

noisy. The student should quantitatively assess the sensitivity of PageRank and HITS

to various types of uncertainty in network structure, and compare the sensitivity of

these measures to that of other traditional notions of network importance such as

status.

vii

Preface

Think where man’s glory most begins and ends,

And say my gloray was I had such friends.

The Municipal Gallery Re–Visited

William B. Yeats

Acknowledgments

There are many people who contributed to the effort that is my Studienarbeit.
Without their generous assistance it would not have been possible to write it.

Firstly I would like to express my deep gratitude to Prof. Jörg Raisch. He
established the connection to the Hamilton Institute and arranged my stay here.
In all the years at university I have seen him as my mentor and I would like
to thank him for his great teaching, advice and continuing support throughout
the years.

Secondly I would like to thank in part the Studienstiftung des deutschen
Volkes (“German National Academic Foundation”) and the Hamilton Institute
(ultimately the Science Foundation Ireland, grant number 04/In1/I478) for
their generous financial support. Without that, it would have been very hard
for me to afford the six months I spent here in Maynooth.

Next, I’d like to thank Prof. Robert Shorten from the Hamilton Institute for
taking a chance on an unknown young man from Germany and being mostly
convinced that I could do this. His wise advice and experience he shared
extending way beyond aspects related to this Studienarbeit were a great honour
to receive and follow, not to forget the cracking basketball games at the end of
the weeks.

The person, however, I worked most closely with and who invested a lot of
time and thoughts in me is Dr. Oliver Mason. It will be hard to leave him, his
sagacious advice as well as his humor behind, and I thank him deeply for all
his help, support, ideas and patience.

I also feel deeply honoured and grateful for the opportunity to work at
the Hamilton Institute. It is such a high–profile yet friendly and open minded
environment that I will miss a lot. It was a pleasure to sit in the countless
seminars held by many impressive international scientists. Furthermore I am
most thankful for the many opportunities for my future that have arisen from
my stay in the institute.

Moreover, I would like to thank the following people, colleagues, office mates
or Erasmus students for their help and for being many welcome sources of dis-

ix

x PREFACE

traction, adding some “live” to the “work” and having those many cool parties.
In alphabetical order with titles omitted: Amandine Mukeka, Anat Zil–Bar,
Anthony Ng, Barak Pearlmutter, Baruch Even, Berenice Sanchez, Camille Hy-
ron, Carlos Villegas, Caroline Terrisse, Cornelia Nell, David Malone, Delphine
Wibaux, Fabian Wirth, Ian Dangerfield, Ian Robertson, Kai Wulff, Kate Mo-
riarty, Laura Karsties, Lea Steppacher, Livia Ruiz, Luke O’Shaughnessy, Mark
Verwoerd, Marta Barreras, Mary Quirke, Mehmet Akar, Peter Wellstead, Rade
Stanojevich, Richard Middleton, Rosemary Hunt, Santiago Jaramillo, Selim
Solmaz, Steven Strachan, Tianji Li, Ulf Schaper, Zhangping Du, . . . and many,
many more.

I would also like to thank my favorite pub in Maynooth, the Roost, for
the nice atmosphere for having all those Pints o’ Guinness, Jameson or Bush-
mills Whiskeys, the little dancing area upstairs and the pub grub served. And
thanks to Amandine’s great Salsa classes twice a week we always had a great
time those Sunday nights at the SamSara in Dublin.

Finally, I could never overstate my gratitude toward my family and close
friends for their continuous help and moral support, especially during the darker
moments at the beginning of my stay here.

∗ ∗ ∗

Declaration of originality

I hereby declare that this thesis and the work reported herein was composed
and originated entirely by myself. Information derived from the published and
unpublished work of others is acknowledged in the text and a list of references
is given in the bibliography.

Magdeburg, 7. Oktober 2005

Florian Knorn

Introduction

Graphs are a very versatile and powerful means of modelling complex, “net-
worklike” systems. This rather abstract mathematical construct can be used to
capture interactions between a large number of components or agents, and, be-
yond allowing for an intuitive graphical representation, provides us with many
methods to analyse and manipulate the system we are interested in.

We will use the first chapter to present and review basic notions from graph
theory to have a clear framework to build our further investigations on.

Graph theory is an established discipline in discrete mathematics, but un-
til fairly recently only relatively small graphs have been considered. However,
advances in many fields have brought along tremendously more complex and
larger graphs. For instance, the concept of a graph has been used to describe
networks as large and diverse as the internet, neural networks of living crea-
tures, telephone networks or social relations.

As in most other disciplines people tried to create models that reflect or
imitate the properties of real world systems. The most prominent and seminal
of these is certainly the classical random graph model by Erdös and Rényi.

But this rather artificial model cannot capture many of the remarkable
aspects of real world networks. The urging need for better models has been
satisfied to some extent by the introduction of more complicated models in the
recent past, like the small–world model by Watts and Strogatz, or the scale–free
model by Barabási and Albert. The second chapter of this document focuses
on these three graph models. We shall shed some light on their characteristics
as well as on how they compare with each other, and with real world networks.

The increasing complexity and amount of data becoming available from
real world applications but also randomly generated networks brought along
pressing needs for methods and algorithms to analyse them. This can involve
determining global properties of the network, i. e. characterising the network as
a whole, but also local or individual measures for groups of nodes or individual
nodes.

A very common task would be to identify important or critical nodes of a
network. An important application is the retrieval of relevant information from
a knowledge base in the form of a large network, a very prominent example
being the world wide web. Finding the right piece of information then boils
down to finding important or relevant nodes relative to the query. The knowl-
edge of key nodes could also be used to either target them, as one would want
to do for example in networks describing the spread of epidemics — or protect
them, like in networks representing some sort of infrastructures for instance.

It is the aim of the third chapter to review some of the highly ingenious
ranking schemes that try to answer the need for identifying important nodes

xi

xii INTRODUCTION

in a network. These include the famous PageRank algorithm, the fairly recent
measure called “damage”, but also a number of classical topological measures
that have been established in relation with resource allocation problems.

Networks drawn from real world systems are usually based on some sort of
physical measurement which in cases may introduce considerable amounts of
noise. Before using a ranking scheme it is crucial to evaluate its sensitivity to
wrong, incomplete, missing or uncertain data.

This is especially important in domains like biology, where one has to face
significant amounts of noise in the data due to numerous reasons. A scheme
that inverts the order of the nodes in the ranking when only a few edges are
changed would clearly be of little practical use.

For that reason, we shall evaluate in the fourth chapter the robustness of
the introduced ranking schemes with respect to perturbations in the network.
We establish empirical ways of measuring deviations between rankings and use
these to analyse the sensitivity of the ranking schemes on randomly generated
scale–free graphs.

Another question that needs to be addressed is the actual usefulness of the
rankings, i. e. the ability of the ranking schemes to actually identify essential
nodes with respect to certain criteria (based on the application). Obviously,
this has to be done in conjunction with real data where we know which nodes
are important and which are not.

We evaluate this on biological data in Chapter 5 using three different
protein–protein interaction networks that have been established recently. These
datasets provide us with the networks as well as the set of nodes that are know
to be essential to the survival of the organism. In particular, we investigate
the connection between the essentiality of nodes and the amount of importance
attributed to them by the different ranking schemes.

All the algorithms used in the preparation of this document have been
written in Matlab and are available on the accompanying web page of this
document, [36]. Most of them are commented on and explained in the text,
together with the core of their code. We used the freely available program
Pajek, [7], to generate the graphics. The three datasets from Chapter 5 can
also be found in [65].

C H A P T E R 1

Notions from Graph theory

A few basic notions from graph theory will be

recalled, introducing various definitions and

terminology, four types of matrices associated with

graphs and some characteristic values.

1.1 Introduction

The notion of a “graph” as currently used in graph theory was first introduced
in the first half of the eighteenth century by the swiss mathematician Leonhard
Euler, who tried to solve the Königsberg bridge problem1. It is said that about
100 years later the english mathematician James J. Sylvester coined the word
“graph” as we currently know it.

A surprisingly large number of systems have a complex, weblike structure
which can be described using graphs. So clearly, results from graph theory
allow investigation — and explanation — of many properties of these systems.

Examples can be drawn from many aspects of life, [2]. Just to name a
few, large graphs have been used to describe the hyperlink structure of the
world wide web, the system of routers and computers forming the internet,
complex chemical reaction networks in a cell, steps in protein foldings, neural
networks, power grids, cellular and phone networks, collaboration networks of
scientists or actors, word occurrences or patterns in linguistics, power grids,
transportation or traffic networks.

This chapter discusses several basic notions from graph theory to facilitate
our later discussion of random graphs.

1.2 Basic definitions

1.2.1 Graphs

Let’s start off with a very general definition of a graph:

Definition 1.1 (Graph)
A graph G is a couple of finite sets (V, E), where V is the set of nodes,

and E is the set of edges between the nodes, E ⊆
{

(u, v)
∣

∣u, v ∈ V
}

.

1 At the time, the city of Königsberg consisted of two islands in a river, linked by seven
bridges. On his morning walks, Euler wondered if there was a route beginning and ending
at the same point and traversing all the brigdes exactly once. To find out whether this was
possible or not, Euler modeled the problem with a graph . . .

1

2 CHAPTER 1. NOTIONS FROM GRAPH THEORY

Usually, one distinguishes between two major types of graphs: directed

graphs (also called digraphs) and undirected graphs.
A graph is said to be undirected if the adjacency relation defined by the

edges is symmetric (i. e. E ⊆
{

{u, v}
∣

∣u, v ∈ V
}

is made up of sets of nodes
rather than ordered pairs). Otherwise the graph is called directed.

An example of a directed graph Ga = (Va, Ea) as well as the corresponding
undirected graph Gb = (Vb, Eb) is shown in Figure 1.1.2 Their vertex sets are

Va = Vb = {1, 2, 3, 4, 5, 6, 7}

and their edge sets are

Ea =
{

(1, 3), (1, 5), (2, 1), (3, 5), (5, 3), (5, 4), (6, 5)
}

Eb =
{

{1, 3}, {1, 5}, {2, 1}, {3, 5}, {5, 4}, {6, 5}
}

Usually, graphs are depicted using dots or circles for the nodes; pairs of
them may be joined by a line if the corresponding nodes are connected. Arrow
tips at the end of a line usually indicate that the edge is directed.

1

2
3

4

5

6

7

Ga

1

2
3

4

5

6

7

Gb

Figure 1.1: Digraph Ga and the corresponding undirected graph Gb.

1.2.2 Edges and nodes

Two nodes (or vertices or points) of a graph may be connected by an edge (or
line or branch), corresponding to one element of the edge set. Directed edges
are often called arcs.

An edge has either one or two nodes associated with it, called endpoints.
An edge is said to join its endpoints. If these endpoints are distinct, the edge
joining them is called proper; an edge joining a single endpoint to itself is called
a self–loop. A multi–edge is a collection of two or more edges having identical
endpoints.

If a node v is an endpoint of an edge e, then e is said to be incident on v
and v is incident on e. If two nodes u and v are joined by an edge, u and v
are said to be adjacent or connected and usually called neighbours. A node u is
said to be reachable from v if there exists an (un)directed path with v as initial
node and u as terminal node.

2 Graphics created with scPajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

1.2. BASIC DEFINITIONS 3

A node can be connected to no other nodes, one node, or many nodes,
including itself. The number of edges attached attached to a node is called its
degree (or valence). In directed graphs, one may further distinguish between the
indegree and the outdegree of a node (as being the number of in– respectively
outgoing edges to respectively from it). A node with degree 0 is called isolated.

1.2.3 Special graphs

To be able to define some further properties of graphs, we need the definitions
of “paths” and “cycles”:

Definition 1.2 (Paths and cycles)
Let G = (V, E) be a graph, m ∈ N and vi ∈ V, i = 1 , . . . ,m + 1 , are m + 1

distinct vertices. If exists a sequence ϕ ∈ Em with

ϕ =

{

(

(v1 , v2), (v2 , v3), . . . , (vm , vm+1)
)

if G is directed
(

{v1 , v2}, {v2 , v3}, . . . , {vm , vm+1}
)

if G is undirected

it is called a (directed) path of length m. If v1 = vm+1 , the path is called
closed. The shortest path between two distinct nodes i and j is called geodesic.
Its length is denoted lij and often referred to as distance between i and j.

A cycle (or circuit) is a closed path with length ≥ 3 and no repeated
internal nodes.

With these basic notions we can now review a few special, but classical
types of graphs. A graph G = (V, E) is said to be

– simple if it contains no multi–edges and no self–loops,

– bipartite if there exists a non–trivial partition V = V+ ∪V− of the vertex
set with V+ ∩ V− = ∅ such that for all edges (u, v) ∈ E (or {u, v} ∈ E)
u ∈ V+ and v ∈ V−,

– complete if there exists one and only one edge between every pair of
distinct nodes,

– an underlying graph if it is the undirected version of a directed graph,

– connected if every node can be reached from every other node (in the
undirected case). If this holds for a digraph, it is called strongly connected,
if it only holds for its underlying undirected graph, it is said to be weakly

connected,

– (k–)regular if all its nodes have the same degree (k),

– a subgraph of another graph G̃ = (Ṽ, Ẽ) if V ⊆ Ṽ and E ⊆ Ẽ .

4 CHAPTER 1. NOTIONS FROM GRAPH THEORY

Note: In the following we will only focus on simple graphs
as most of the graphs we will be encountering in this paper
are simple graphs!

Furthermore we will always suppose that a graph G = (V, E)
we are investigating has n = |V| nodes and that they are
numbered and explicitly ordered 1, . . . , n.

1.3 Matrices associated with graphs

In order to work with graphs, the representation using two sets is not very
useful. In fact, all the information contained within these two set (with the
exception of the names of the nodes, if they are not explicitly numbered 1 to
n) can be contained in a matrix.

1.3.1 Adjacency matrix

One of the most common — and probably the most intuitive matrix associated
with graphs is the following.

Definition 1.3 (Adjacency matrix)
The n× n adjacency matrix A of a graph G = (V, E) is defined as

aij =

{

1 if (vi, vj) ∈ E resp. {vi, vj} ∈ E
0 otherwise

(1.1)

and hence is symmetric if G is an undirected graph.

The adjacency matrices for the two graphs from Figure 1.1 on page 2 would
be the following:

AGa
=





















· · 1 · 1 · ·
1 · · · · · ·
· · · · 1 · ·
· · · · · · ·
· · 1 1 · · ·
· · · · 1 · ·
· · · · · · ·





















, AGb
=





















· 1 1 · 1 · ·
1 · · · · · ·
1 · · · 1 · ·
· · · · 1 · ·
1 · 1 1 · 1 ·
· · · · 1 · ·
· · · · · · ·





















where “ · ” corresponds to a zero entry (for better legibility). As in this example
we will sometimes index adjacency matrices with the names of the graphs they
correspond to (to avoid any ambiguity).

Note that the last row and column in both matrices is all empty, corre-
sponding to the isolated node 7. Furthermore, as we have no self–loops, all
main diagonal elements are also all zero.

1.3. MATRICES ASSOCIATED WITH GRAPHS 5

Connected graphs

In the example above, as node 7 cannot be reached from any other node, Gb is
not connected. The property of a graph being either connected or not is closely
related to a certain property of its adjacency matrix.

It’s a well know fact, and stated formally in Theorem A.1 on page 97 in
the Appendix, that a graph is (strongly) connected if and only if its adjacency
matrix is irreducible in the sense of the following definition.

Definition 1.4 (Irreducibility of a matrix)
A matrix A ∈ R

n×n with is said to be reducible if either

(i) n = 1 and A = 0 ; or

(ii) n ≥ 2 , there is a permutation matrix Π n ∈ R
n×n and there is some

integer r with 1 ≤ r ≤ n − 1 such that

Π
T
nAΠ n =

[

B C

0 D

]

(1.2)

where B ∈ R
r×r, D ∈ R

(n−r)×(n−r), C ∈ R
r×(n−r) and 0 ∈ R

(n−r)×r is
the zero matrix.

Note that this definition does not require the blocks B, C, and D to have
nonzero entries, but only that one should be able to get an (n− r)–by–r block
of 0 entries in the indicated position by some sequence of row and column
interchanges.

Powers of the adjacency matrix

Looking at the adjacency matrix A of a graph with n nodes, we basically see
the locations of paths of length 1 between each pair of nodes (aij = 1 per
definition means there is an edge between node i and j). Strictly speaking, we
see the number of paths of length 1 between each pair of nodes, as we will see
now.

It is a fact that if we look at a positive power of the adjacency matrix, Am,
m ∈ N, each entry am

ij tells us the number of paths of length m between node
i and node j.3. This can easily be seen if we recall that

a2
ij =

n
∑

k=1

aikakj

Here, the value of a2
ij corresponds to the number of cases where there are two

edges (i, k) and (k, j), i. e. the number of different paths of length two that go
from node i to node j. This can then be easily extended to higher powers of A.

With this in mind, it is quite immediate to see that a matrix A is irreducible
if and only if some positive power of (A + id) is strictly positive (the addition
of the identity matrix is needed to ensure the fact that every node is reachable
from itself).

3 am
ij denotes element (i, j) of Am, see also the List of Symbols on page 110.

6 CHAPTER 1. NOTIONS FROM GRAPH THEORY

1.3.2 Laplacian matrix

Another commonly used matrix for analyzing graphs is the Laplacian matrix,
which we now define.

Definition 1.5 (Laplacian matrix)
For an undirected graph G = (V, E) with n = |V| nodes, its n × n Lapla-

cian matrix (also called graph Laplacian, just Laplacian, Admittance–
or Kirchhoff matrix) LG is defined as the difference between its degree matrix
and its adjacency matrix:

LG = DG −AG

where DG = diag(k1, k2, . . . , kn), ki being the degree of node i.

To illustrate this definition, the Laplacian of Gb from Figure 1.1 on page 2
would be

LGb
=





















3 −1 −1 · −1 · ·
−1 1 · · · · ·
−1 · 3 · −1 · ·
· · · 1 −1 · ·
−1 · −1 −1 4 −1 ·
· · · · −1 1 ·
· · · · · · ·





















The definition of the Laplacian allows for it to have a couple of important
and elementary properties:

Proposition 1.1 (Positive semidefiniteness of the Laplacian)
For an undirected graph G = (V, E) the following hold for its Laplacian:

(i) LG is positive semidefinite.

(ii) The smallest eigenvalue of LG is λ1 = 0 and a corresponding eigenvector
is 1n, the n–element column vector with all ones.

(iii) Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of LG . If G is connected, then
λ2 > 0 .

Proof: Partly taken from [58]:

(i): Let G1,2 denote the graph with two nodes and one (undirected) edge
connecting them (•−−−•). Then, its Laplacian is

LG1,2
=

[

1 −1
−1 1

]

Obviously, xT LG1,2
x = (x1 − x2)

2 ≥ 0 for all x ∈ R
2. As every (non–empty,

simple and undirected) graph G is made up a multitude of these G1,2’s, it is
clear that

xT LG x =
∑

(u,v)∈E

(xu − xv)
2 ≥ 0

1.3. MATRICES ASSOCIATED WITH GRAPHS 7

for all x ∈ R
n.

(ii): As the sum over a row from AG is equal to the degree of the corre-
sponding node, the sum over a row of LG is always zero. Hence LG 1n = 0n.

(iii): Let ν be an eigenvector of LG of eigenvalue 0. Then LG ν = 0n and

νT LG ν =
∑

(u,v)∈E

(νu − νv)2 = 0

Thus for each pair of nodes (u, v) connected by an edge, we must have νu = νv.
As the graph is connected, we have νu = νv for all pairs of nodes (u,v), which
implies that ν is a scalar multiple of 1n. Thus, the eigenspace associated with
λ1 = 0 has dimension 1, and since LG is positive semidefinite, λ2 must be
strictly positive. �

As a result from linear algebra, the fact that LG is always positive semidef-
inite implies that all its eigenvalues are real and nonnegative, which was used
in the proof of (iii).

This property has actually led Fiedler to consider the magnitude of λ2

as a measure of the connectedness of a graph [21], calling λ2 the algebraic

connectivity. Loosely speaking: the greater λ2, the more “connected” the graph.
As the spectrum of a graph is made of the union of the spectra of its

connected components, the multiplicity of 0 as an eigenvalue of LG is equal to
the number of connected components4.

A number of different results using λ2 can found in [47], like bounds for the
diameter, average path length or other characteristic values of a graph, [46].
These are useful for extremely large networks that are out of scope of algorithms
like those shown in the next section.

Before moving on, let’s have a quick look at our example from Figure 1.1
on page 2 again. There, the three smallest eigenvalues of LGb

are 0, 0, and ≃
0.6314, indicating, that it has two connected components (that is the connected
nodes 1 to 6 on the one hand, as well as the isolated node 7 on the other).

1.3.3 Distance matrix

Another matrix we are going to look at is the distance matrix. It contains all
the distance information of the graph, that is the shortest path lengths between
any two (distinct) nodes.

We present here a somewhat customized definition of the distance matrix,
allowing us to extend its classical definition to disconnected graphs.

Definition 1.6 (Distance matrix)
For a given graph G = (V, E), its n× n distance matrix ∆. is given by

δij =











0 if i = j

lij if node i can be reached from node j

n if node i cannot be reached from node j

4 A connected component of a graph G1 is a connected subgraph G2 such that no subgraph
of G1 that properly contains G2 is connected. In other words, a connected component is a
maximal connected subgraph.

8 CHAPTER 1. NOTIONS FROM GRAPH THEORY

where n = |V| is the total number of nodes in the graph.

The usual definition of the distance matrix either demands connectedness,
or, if not, sets the corresponding entries for disconnected nodes to infinity. For
our applications later we choose not to set it to infinity, as this does not allow
for any quantification to which extent a node is disconnected. This will be
particularly important when we look at centrality measures like excentricity,
status and centroid value (see Section 3.5 on page 52).

Obviously, this matrix will be symmetric in the case of undirected graphs.
One way of calculating it is mentioned in Footnote 7 on page 11.

In our example from Figure 1.1 on page 2, the distance matrix of the di-
rected graph Ga is:

∆Ga
=





















· 7 1 2 1 7 7
1 · 2 3 2 7 7
7 7 · 2 1 7 7
7 7 7 · 7 7 7
7 7 1 1 · 7 7
7 7 2 2 1 · 7
7 7 7 7 7 7 ·





















1.3.4 Incidence matrix

For reasons of completeness, let’s define a third type of matrix usually associ-
ated with an undirected graph [47]:

Definition 1.7 (Incidence matrix)
For a given directed graph G = (V, E), the |V| × |E| incidence matrix I

is defined by

ive =











−1 if edge e is directed to node v

1 if edge e is directed from node v

0 otherwise

In case of an undirected graph, first orient its edges arbitrarily, i. e. for each
e ∈ E, choose one of its endpoints as the initial node, and the other as terminal
node.

Defining the incidence matrix for an undirected graph as above we have

LG = IG IT
G (1.3)

independent of the orientation chosen for the edges [9]. This property can be
used for an alternative proof of Propos. 1.1(i) on page 6. Using the incidence
matrix and the scalar product, we can write with Equation (1.3)

xT LG x = 〈LG x,x〉 = 〈IG IT
G x,x〉 = 〈IT

G x, IT
G x〉 ≥ 0

showing that the Laplacian of a graph is always positive semidefinite.

1.4. CHARACTERISTIC VALUES 9

For our small graph Ga from Figure 1.1 on page 2, the incidence matrix
would be:

IGa
=





















−1 1 1 · · · ·
1 · · · · · ·
· −1 · 1 −1 · ·
· · · · · −1 ·
· · −1 −1 1 1 1
· · · · · · −1
· · · · · · ·





















Now that we gathered the necessary terminology we should take a look at some
characteristic values associated with graphs.

1.4 Characteristic values

To be able to better classify and compare the topologies of the random networks
encountered in the next chapter we need a number of local and global measures
associated with networks.

As we could not find any practical implementations of algorithms that cal-
culate or determine those measures — nor good hints on how to realise them —
we had to come up with an exact way of calculating them as well as sufficiently
fast implementations for our purposes. For both reasons, we present with each
value the core routines of the Matlab programs that accompany this paper.5

1.4.1 Average node degree

As the name suggests, the definition is straightforward:

Definition 1.8 (Average node degree)
The average node degree of an undirected graph G = (V, E) is defined as

〈k〉 =
1

n

n
∑

i=1

ki

where ki is the degree of node i and n = |V| ≥ 1 is the total number of nodes.

If G is a directed graph, then

〈k〉 =
1

n

n
∑

i=1

(

kini + kouti

)

where kini and kouti are the in– and outdegrees of node i.

The Matlab code for this value is also straightforward. One can easily see
that 〈k〉 = 2e/n, where e = |E| is the total number of edges. So in the m–file,

5 Implementations in lower level programming languages may differ significantly from the
approaches taken here, where we tried to avoid loops as much as possible and rather used
matrix operations and built in routines of Matlab.

10 CHAPTER 1. NOTIONS FROM GRAPH THEORY

we only need to get the number of non–zero entries in the adjacency matrix,
which gives us the number of edges e, and divide by n, if we’re dealing with an
undirected graph.

In the directed case, however, each edge is not accounted for with two
entries in the adjacency matrix, so we must not forget to multiply by two. The
resulting simple program is shown in Listing 1.1.

1 function k = avk(A)

2

3 if A 6= A' % A is not symmetric => directed graph

4 k = 2*length(find(A))/size(A,1);

5 else % A is symmetric => undirected graph

6 k = length(find(A))/size(A,1);

7 end

Listing 1.1: Function for determining the average path length of a graph.

1.4.2 Average path length

Definition 1.9 (Average path length)
The average path length 〈l〉 of a (strongly) connected graph G = (V, E) is

defined as the average length of geodesics between every pair of distinct nodes:

If lij is the length of the geodesic between the distinct nodes i and j, and
G =

{

lij
∣

∣i, j ∈ V, i 6= j
}

is the set of all geodesics, then

〈l〉 =
1

|G|
∑

l∈G

l

If the graph is not connected, the average path length is defined as the
average lengths of the geodesics of every pair of mutually reachable nodes,
i. e. G =

{

lij
∣

∣i, j ∈ V, i 6= j,node i can be reached from node j
}

in this case.

There are basically two different ways of determining 〈l〉. We could first
gather all the lengths of all the needed geodesics using specialized algorithms
that find shortest paths (for example Dijkstra’s algorithm [17] or the Bellman–
Ford algorithm [8, 34]) and then take the average.

However, as it proved to be significantly faster in our setup6 and provides
some further information, we use a rather “brute force” algorithm:

Calculation

Suppose we have a simple and connected graph. We know that powers of the
adjacency matrix tell us the number of paths with a certain length between

6 That is with Matlab. Here, our algorithm mainly using the built–in matrix opera-
tions always outperformed a (Matlab–) implementation of Dijkstra’s algorithm as the lat-
ter involves several levels of nested for–loops. However, in lower level implementations the
opposite will be the case as not only will there be, in average, less operations and memory
required, but also loops are evaluated much faster.

1.4. CHARACTERISTIC VALUES 11

each pair of nodes. Hence in order to determine the shortest path between two
nodes i and j we can look at powers of the adjacency matrix and wait for the
emergence of a non–zero value in the ij–th entry. So if for a certain m̃ ∈ N

we have am̃
ij 6= 0 where for lower powers that entry was always zero, we can

conclude that the shortest path from node i to node j has length m̃.
Effectively, all that needs to be done is keep track of the number of new

non–zero entries at each step (new power of A) and then calculate the average.
To do so, we iteratively sum up the powers of A:

AΣ
(m) = A0 + A1 + A2 + . . . + Am (1.4)

As the graph consists of n nodes, the shortest path between two nodes can
have at most length n − 1 (if it was longer, then at least one node has to be
“visited” more than once which cannot result in the shortest path). For that
reason, we only need to test up to m ≤ n− 1 which prevents an infinite loop.
If AΣ

(m̃) is strictly positive for some m̃ ≤ n − 1, then the graph is connected,
the longest shortest path has length m̃ and we can stop the iterations.

Another break condition would be if there is no increase in the count of
non–zero elements between two steps. This is also an indication that the graph
is not connected. In this case, we can stop the iteration and calculate the
average even so, but we should indicate that the graph is not connected.7

In fact, in this case, it is a useful piece of information to know how many
connected components the graph is composed of. This can be determined quite
easily using AΣ

(m), as we will see next.

Number of connected components

In order to determine the number of connected components, in case of discon-
nected undirected graphs, we can use the following iterative process: Taking
AΣ

(m) from Equation (1.4) above that we calculated with the average length
algorithm, we first look at its first row. All the zero entries in this row corre-
spond to nodes that cannot be reached from the first node. On the other hand,
the number of non–zero entries in that row is the size (as of number of nodes)
of the connected component the first node is in, because all these nodes can be
reached from it.

Now we discard the first connected component by only keeping the rows
and columns of AΣ

(m) where there had been some zero entries. We restart with
this new, smaller matrix again by looking at the first row and so on — until
we end up with an empty matrix.

The number of times this process can be repeated then corresponds to the
number of connected components. This method can also be used find the size of
the largest connected component (simply by storing the sizes and finding the

7 Precisely this procedure can also be used to establish the distance matrix of a graph: at
each step, when a new non–zero entry “emerges”, simply note its location ij and the value of
m (the length of the just “discovered” geodesic between nodes i and j). This way we gather
all the information we need to construct ∆.
Using the framework of the algorithm for the average path length at the end of this subsection,
all one had to do is to instantiate an empty ∆ with D = zeros(n,n) and add the short
line D = D + m*xor(Asum1,Asum2) at the end of the first while–loop, e. g. after Line 16.
If the graph is disconnected, we must additionally set all the remaining zero entries (but the
ones on the main diagonal) to n, using for example D(find(¬D))=n; D = D−n*eye(n);.

12 CHAPTER 1. NOTIONS FROM GRAPH THEORY

maximum) and, of course, determine the connected components themselves
(see Subsection 3.6.2 on page 56).

Implementation

We now finish this subsection by presenting the implementation of this tech-
nique. Before we move on, a little comment on the handling of sparse matrices
in Matlab is appropriate.

As most of the matrices used in the Matlab programs here are quite, if not
very sparse, dealing with them is much more efficient and faster when we use
the sparse matrix format rather then using full matrices. That way, Matlab

only calculates where it needs to calculate. Most of the Matlab functions
have a built in optimized version of the algorithms they are using, specifically
designed for the sparse data type (and they use it automatically).8

Another advantage of using sparse matrices are the few additional functions
available for this data type, like nnz for example, which returns the number of
non–zero entries.

To further speed up the algorithms, the entries of the matrices are converted
to the logical data type. That way Matlab only has to perform binary
operations like OR, NOT or AND on the entries.

With all this in mind, it is now easy to understand our way of implementing
the algorithm in Listing 1.2 on the facing page. Taking an adjacency matrix A,
the function returns of course the average path length 〈l〉 as well as the number
of connected components ncc and the size of the largest connected component
nlcc.

1.4.3 Diameter

The following definition reflects the most widely spread interpretation of the
diameter of a graph.

Definition 1.10 (Diameter)
The diameter d of a (strongly) connected graph is defined as the length of

the longest geodesic, i. e. the length of the longest shortest path.

If the graph is not connected, it is defined the same way, but only for all
pairs of mutually reachable nodes.

It is important to mention that some people understand the diameter as
the average path length. As this might lead to confusion, we stick to the most
popular interpretation and keep the average path length separate.

We can use exactly the same algorithm as for the average path length to
calculate the diameter. There, we find the diameter to be the value of m or
m− 1, depending on why the while–loop in Line 11 quit:

– If the loop stopped because A became strictly positive, then d = m

8 For instance, if Matlab was to calculate the scalar product of two all zeros vectors in
the full data type, it would first blindly multiply all the corresponding entries and sum
them up only to find that the result is zero. If the sparse format had been used, it would
come up with zero right away, not doing a single multiplication, because it “knows” there is
no point in multiplying something by zero (as zero is the result right away) or adding zero
to something.

1.4. CHARACTERISTIC VALUES 13

1 function [l , ncc , nlcc] = avl(A)

2

3 n = size(A,1); m = 0; l = 0; count = []; ∆nnz = 42;

4

5 % start the testing−loop
6 A = logical(A); % make sure, A is of type 'logical'

7 Asum2 = logical(speye(n)); % sparse identity matrix

8 Am = Asum2; % corresponds to A^0

9 warning('off','MATLAB:conversionToLogical'); % we know that issue.

10

11 while (nnz(Asum2) 6= nn) && (∆nnz 6= 0) && (m ≤ n)

12 m = m + 1; % increase counter

13 Am = logical(double(Am)*A); % raise A to a new power

14 Asum1 = Asum2; % store previous Asum

15 Asum2 = Asum1 | Am; % add new power

16 ∆nnz = nnz(Asum2)−nnz(Asum1); % increase of new shortest paths

17 end

18

19 % finish by calculating the average

20 for i=1:length(count)

21 l = l + count(i)*i;

22 end

23 l = l/sum(count);

24

25 % if graph is not connected, count ncc and determine the slcc

26 if (∆nnz == 0) || (d == n)

27 ncc = 0; % number of connected components

28 scc = []; % size of each connected component

29 while ¬isempty(Asum2)
30 ncc = ncc + 1; % increase count of cc

31 zeroz = find(Asum2(1,:)==0);% grab zero entries in first row

32 scc(ncc) = length(find(Asum2(1,:)>0)); % scc=nnz(first row)

33 Asum2 = Asum2(zeroz,zeroz); % Asum2 = all−zero−rows and cols

34 end

35

36 nlcc = max(scc); % find largest connected component

37 if isempty(nlcc) % if it's empty (i.e. only one node)

38 nlcc = 1; % set size to 1

39 end

40

41 else % graph is connected

42 ncc = 1;

43 nlcc = n;

44 end

Listing 1.2: Function calculating average path length, the number of connected
components as well as the size of the largest connected component.

– Else (if ∆nnz == 0 or m == n or), then d = m − 1 (because the loop
went one iteration too far)

1.4.4 Clustering coefficient

Many types of networks have some inherent tendency to form clusters. Within a
circle of friends, for example, it is somewhat likely that two friends of somebody
are also friends with each other.

14 CHAPTER 1. NOTIONS FROM GRAPH THEORY

One way of measuring the extent of this “cliquishness” was proposed by
Watts and Strogatz in [62], where they introduced the clustering coefficient as
a measure on how close the neighbourhood of each node comes on average to
being a complete subgraph:

Definition 1.11 (Clustering coefficient)
For a node i with neighbourhood Ni = { vj | eij ∈ E}, if |Ni| = ki ≥ 2, the

clustering coefficient ci is defined as the proportion of links between the ki

nodes within its neighbourhood divided by the number of links that could possibly
exist between them:

ci =























∣

∣{ejk}
∣

∣

ki(ki − 1)
if G is a directed graph

2
∣

∣{ejk}
∣

∣

ki(ki − 1)
if G is an undirected graph

(1.5)

with vj , vk ∈ Ni and ejk ∈ E for i = 1 , . . . ,n.

The (average) clustering coefficient 〈c〉 of a graph G = (V, E) is the
average of the clustering coefficients of the nodes that have two or more neigh-
bours.9

Calculation

Many people have also interpreted the definition above as the ratio of existing
triangles to possible triangles within the neighbourhood of node i and contain-
ing node i. Using the adjacency matrix of the graph a triangle containing node
i always has the form aijaikajk 6= 0.

So in case of an undirected graph, A = AT , one can write immediately:

ti =
∑

j>k

aijaikajk and ci =
2ti

ki(ki − 1)

Note that looking at the main diagonal of A3, we find ti = aii/2: recall,
that entries (i, j) of Am correspond to the number of paths of length m between
node i and node j. So the main diagonal of A3 corresponds to the number of
paths of length 3 starting from and ending in each node — in other words the
number of triangles. This is a fast way of calculating the average clustering
coefficient, but one may run out of memory in the calculation of A3. For
that reason, we now present a less memory consuming implementation of the
algorithm.

Implementation

The function takes the adjacency matrix A as argument and returns the clus-
tering coefficient 〈c〉, the number of isolated nodes as well as the number of
nodes with degree 1, see Listing 1.3 on the next page. Note that the algorithm
is only intended for undirected graphs.

9 The word “average” is usually omitted.

1.4. CHARACTERISTIC VALUES 15

We basically do exactly what has been described above, that is systemati-
cally fetch the neighbors of nodes and count the edges among them.

As most of the matrices are rather sparsely filled, bluntly iterating over
all the j > k would involve a lot more operations than needed. To spare
from that, we only look within the set of neighbours Ni of node i for possible
aijaikajk 6= 0, cf. Line 19.

Cases of nodes with only zero or one neighbours are taken care of in
Lines 11–15: in both cases, the respective counter is incremented (which can
later be used to report those cases) and the corresponding entry in the c vector
will be a NaN10.

With this information we can easily calculate the clustering coefficient for
each node (where it makes sense) and take the average, Line 28.

1 function [c , k0count , k1count] = cc(A)

2

3 n = size(A,1); c = []; k0count = 0; k1count = 0;

4

5 % for each of the n nodes:

6 for i = 1:n

7 % step 1: find immediate neighbours nb of node i:

8 nb = find(A(i,:)); % n_i

9 nnb = length(nb); % |n_i| = k_i = no. of neighbours

10

11 if nnb == 0 % if k_i = 0 or 1 −> cc concept not applicable

12 k0count = k0count + 1; c(i) = NaN; continue

13 elseif nnb == 1

14 k1count = k1count + 1; c(i) = NaN; continue

15 end

16

17 % step 2: count egdes amongst the neighbours of node i

18 edgecount = 0;

19 for j = 1:nnb

20 for k = j+1:nnb % symmetry saves work: k > j

21 if A(nb(j),nb(k))

22 edgecount = edgecount + 1;

23 end

24 end

25 end

26

27 % step 3: c_i = exist_edges / possib_edges b/w neighbours

28 c(i) = 2*edgecount / (nnb*(nnb−1));
29

30 end

31

32 % finish by calculating average over all non−NaNs
33 c = full(mean(c(find(¬isnan(c)))));

Listing 1.3: Function calculating the (average) clustering coefficient as well
as the number of nodes with 0 and 1 neighbours.

With the implementation of this algorithm we would like to close this chapter
of basic notions from graph theory and move on to random graphs.

10 NaN stands for “Not a Number”

C H A P T E R 2

Random graphs

We introduce three major types of random graphs,

analyse their characteristics and generic properties,

and compare their behaviour with some real world

examples.

2.1 Introduction

As mentioned earlier, the concept of graphs has been around for some centuries.
But until the 1950s, attention was paid only to “regular” graphs. In fact, it
was the Hungarians Paul Erdös and Alfréd Réyni who extended the focus on
large–scale networks with no apparent design principles — “random graphs”.
Since their famous paper [19] from 1959, random graph theory has become one
of the main areas of interest in modern discrete mathematics, producing many
and some highly ingenious results. Some of them for instance allow us to better
understand the mechanisms that determine or lead to the specific topology of
a large network.

Some dramatic advances have been made in the past few years, mainly made
possible by increases in computational power as well as the computerisation of
data acquisition in many fields allowing for large databases and abundant data
of various real networks. On the other hand, as boundaries break down between
different disciplines, collaboration of mathematicians, computer experts and
biologists, for example, have brought some interesting advances in systems
biology, as the classical reductionist modeling approach cannot always give an
explanation for the behaviour of a system as a whole.

In the absence of real data, or for simulation purposes, people tried to
recreate the phenomena observed in real networks using random networks. As
a result, a large variety of graph models has been established.

In this chapter we shall review a number of interesting and important find-
ings not only for the classical Erdös–Rényi model but also for two other, more
recent models, namely the one by Watts and Strogatz, and the one by Barabási
and Albert. Especially the last model of these will be used extensively in our
later work.

For a first, uncommented impression, Figure 2.1 on the following page shows
three small graphs with 20 nodes and 20 edges created using those models.
Larger examples are can be found in Figure 2.2, Figure 2.5 and Figure 2.8 on
pages 21, 27 and 33 respectively, each of them having n = 100 nodes and about
e = 200 edges.

17

18 CHAPTER 2. RANDOM GRAPHS

(a) (b) (c)

Figure 2.1: Small instances of our three random graph models:
(a) Erdös–Rényi, (b) Watts–Strogatz and (c) Barabási–Albert.

2.2 The Erdös–Rényi Model

As mentioned above, this is historically the first model of a random graph. It
is probably the most natural way of creating a random graph: choose (fix) a
number of nodes n and then independently connect each pair of distinct nodes
with an equal probability p.

Erdös and Rényi discovered in the late 1940s that certain probabilistic meth-
ods were often useful in tackling problems in graph theory. Due to its relatively
long history this model has been extensively studied (the Watts–Strogatz and
Barabási–Albert models have only been around for less than seven years). A
useful resource is Béla Bollobás’ excellent book on random graphs, [11].

A typical Erdös–Rényi graph is shown in Figure 2.2(a) on page 21.

2.2.1 Generation of Erdös–Rényi graphs

Generating matrices with random entries in Matlab is usually very fast. The
basic idea of our algorithm, shown in Listing 2.1 on the facing page, is to
create a matrix with all random (uniformly distributed) entries, take — as we
want an undirected graph — the upper triangular part1, replace all the entries
that are larger than (1 − p) by true–entries, the rest by false–entries, and
finally “mirror” down the upper triangle to create the full, symmetric adjacency
matrix.

The only problems may arise in lines 8, 13 and 16, where the generated
random matrix R can become quite large, thus memory consuming, as it is a
full matrix with n2 double–entries (that require 23 bits each). For a desired
network size of for example n = 8192 = 213 nodes a computer would need
at least a total of 213 · 213 · 23 = 229 bytes or 29 = 512 MB of memory to
(temporarily) store R.

To prevent running out of memory even for relatively small n, we not only
clear the variables right after use, but also break up the work by dividing it
into smaller steps: instead of working on the whole n × n random matrix, we
divide that matrix into four blocks of about equal size and only look one by
one at the top left, top right and bottom right block. Having “filtered” the

1 That is, without the main diagonal to prevent self–loops

2.2. THE ERDÖS–RÉNYI MODEL 19

indices of where to place edges, we create them, Line 22, and then finally add
the transpose.

The reason for using the memory consuming method of first generating these
sometimes rather big random matrices is, that it appears to be significantly
faster than using nested loops, randomly deciding for each entry, one by one,
if there should be an edge or not.2

1 function [A] = gen_er(n , p)

2

3 % distinction between odd and even n ...

4 if mod(n,2), n1 = floor(n/2); n2 = n1 + 1; % odd n

5 else, n1 = n/2; n2 = n1; end % even n

6

7 % top left block

8 R = rand(n1,n1); % generate rand matrix

9 T = sparse(triu(R,1)); clear R; % only keep upper triang part

10 [ii1,jj1] = find(T>(1−p)); clear T; % determine "winning" edges

11

12 % top right block

13 R = rand(n1,n2); [ii2,jj2] = find(R>(1−p)); clear R;

14

15 % bottom right block

16 R = rand(n2,n2); T = sparse(triu(R,1)); clear R;

17 [ii3,jj3] = find(T>(1−p)); clear T;

18

19 % combine indices

20 ii = [ii1 ; ii2; ii3+n1]; jj = [jj1 ; jj2+n1 ; jj3+n1];

21 % create A and add transposed to get the full, symm. adj. matrix

22 A = sparse(ii,jj,true(1,length(ii)),n,n); A = A | A';

Listing 2.1: Generating program for Erdös–Rényi graphs.

2.2.2 Properties

In their original article Erdös and Rényi defined the random graph as a graph
with n nodes and e edges chosen randomly from the n(n− 1)/2 possible edges.
This corresponds to picking (with equal probability) one graph out of the
C

[n(n−1)/2]
e possible graphs with n nodes and e edges, which form the prob-

ability space.
Both definitions are equivalent, and if we start with n nodes and connected

independently every distinct pair of nodes with probability p, then the total
number of edges will be a random variable. It is easy to see that its expectation
value will be E(e) = p · n(n− 1)/2.

Studying the properties of the probability space associated with this type
of random graph on n nodes, as n tends to infinity, one of the most impor-
tant observations of Erdös and Rényi was, that many important properties
of this type of random graph appeared quite suddenly. Before commenting

2 Using a 2.8 GHz Pentium 4 machine with 1024 MB of RAM, the algorithm works fine
and in the order of seconds for networks of sizes up to 10000 nodes if p is not too large, which
is more than enough for our purposes.

20 CHAPTER 2. RANDOM GRAPHS

on this however, we would like to present the list of characteristic values for
Erdös–Rényi graphs.

Characteristic values

As mentioned above, we limit ourselves to presenting the results, but give
references for further reading.

Degree distribution It is relatively straightforward to show3 that the distribu-
tion is binomial:

p(k) = Ck
n−1p

k(1− p)n−1−k (2.1)

For large n this distribution can be approximated by a Poisson distribu-
tion

p(k) ≃ e〈k〉
〈k〉k
k!

A typical degree distribution is shown in Figure 2.2(b).

Average node degree Using the expectation value from Subsection 2.2.2:

〈k〉 = 2e/n = p · (n− 1) ≃ pn

Average path length Can be found in [23]:

〈l〉 =
lnn− γ

ln(pn)
+

1

2

where γ is the Euler–Mascheroni constant, see List of Symbols

Diameter More details in [15], but usually concentrated on a few values around

d ≈ lnn

ln(pn)
=

lnn

ln〈k〉

Clustering coefficient For each node, the probability that its neighbours are
connected equals p, so it follows immediately that

〈c〉 = p =
〈k〉
n

3 It is made up of three parts: the number of possibilities of choosing k nodes out of
(n − 1) other nodes (as link–targets), the probability of a particular node actually having k

edges attached to it as well as the probability of not having (n− 1− k) edges attached to it.

2.2. THE ERDÖS–RÉNYI MODEL 21

(a)

Node Degree GGGGGGGGGGA

F
r
a
c
t
io

n
o
f
n
o
d
e
s

in
%

GG
G
G
G
G
G
G
G
GA

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

20

(b)

Figure 2.2: (a) A random graph with n = 100 and e = 200 , generated using
p = 0 .04 .
(b) Degree distributions of 50 random graphs generated with the
Erdös–Rényi model using n = 3000 and p = 0 .001 . The dashed line
has been plotted using the binomial distribution Equation (2.1) on the
facing page.

Thresholds

Definition As mentioned above, Erdös and Rényi discovered the usually very
sudden onset of many properties4 P there usually seems to be a quite precise
threshold value pc for the connection probability so that either almost no graph
constructed with a p < pc has that property, or, conversely, almost every graph
with p > pc has it.

For most of these properties, the critical probability is a function of n, say
pc(n). So, loosely speaking, if in an Erdös–Rényi graph the edge connecting
probability p(n) grows faster than pc(n), i. e. we have p(n) > pc(n) as n grows,
then almost every graph on n nodes with that connection probability p(n) will
have that property.

This can formally be written down by saying for all graphs on n nodes
“built” using a connection probability of p(n), the probability pn(P) of these
graphs having property P (with critical probability pc(n)) is

lim
n→∞

pn(P) =























0 if
p(n)

pc(n)
→ 0

1 if
p(n)

pc(n)
→∞

Let’s have a look at some examples.

Connectedness An interesting threshold probability would be the one for
which almost every graph will be connected. It is mentioned in [2] that this

4 For example connectedness of the graph, emergence of certain types of subgraphs, . . .

22 CHAPTER 2. RANDOM GRAPHS

is usually the case if 〈k〉 ≥ lnn, resulting in pc ≈ lnn/n, but a more rigorous
approach gives the following theorem, found in [11]:

Theorem 2.1 (Connectedness of Erdös–Rényi graphs)
Let c ∈ R be fixed and let Gn,p(n) be an Erdös–Rényi random graph on n

nodes created using

p(n) =
ln(n) + c + o(1)

n
(2.2)

Then the probability pconn that Gn,p(n) is connected tends to

pconn

(

Gn,p(n)

) n→∞−−−−→ e−e−c

(2.3)

where e stands for Euler’s number, e = exp(1).

Proof: Also given in [11]. �

Subgraphs Another set of connection probability thresholds can be found
in [2]. There we find, for example, that if we build Erdös–Rényi graphs with
n nodes and scale the connection probability used according to p(n) = cn−k/l

with a sensibly chosen c ∈ R, many critical probabilities can be established
(proofs of which, again, for example in [11]).

z −∞ −2 − 3
2 − 4

3 − 5
4 −1 − 2

3
− 1

2

Figure 2.3: Threshold probabilities for the appearance of different types of
subgraphs for pc(n) ∼ nz . Courtesy of [2].

Just to name a few: in order for almost every graph to contain at least one

– subgraph with k nodes and l edges: pc(n) = cn−k/l

– tree of order k: pc(n) = cn−k/(k−1)

– cycle of length k: pc(n) = cn−1

– complete subgraph on k nodes: pc(n) = cn−2/(k−1)

Some of these are shown in Figure 2.3.

Giant cluster It is intuitive that, for low probabilities, Erdös–Rényi graphs
consist of just a few, isolated edges, sparsely distributed throughout the graph.
Increasing p, one witnesses the emergence of tress, cycles and other types of
subgraphs, but which are still small and isolated clusters.

For p(n) = cn−1, it follows immediately that the average node degree 〈k〉 is
constant. While for c < 1, the graph consists of isolated clusters, a giant cluster

2.3. THE WATTS–STROGATZ OR “SMALL–WORLD” MODEL 23

(clearly distinguishable by it’s size, containing at least about n2/3 nodes) starts
to form for values of c ≥ 1.

This phenomenon — passing from a fragmented system to a graph which
is dominated by a single giant cluster, the transition roughly happening at
pc(n) ≃ 1/n — is similar to a transition in infinite–dimensional percolation, a
topic thoroughly studied, not only in mathematics [27].

With these remarks we would like to move on to a more recent random graph
model, namely the Watts–Strogatz model.

2.3 The Watts–Strogatz or “small–world”

Model

In the late 1960s, the famous American psychologist Stanley Milgram pro-
claimed his thesis about the “six degrees of separation” between any two per-
sons in the USA, meaning, that any two randomly chosen individuals are linked
by a chain of six or fewer first–name acquaintances [44].

Social networks indeed have been shown to feature — despite their large net-
work size and sparse connections — short average path lengths (which coined
the term “small–world”), but are still highly clustered. For instance, everybody
has a local circle of friends, acquaintances through family, education, work or
hobbies. Furthermore, we also have a few “long range connections” through rel-
atives that moved abroad, an extended stay in an overseas country or somebody
from china you got to know in your favoured café.

To see both these features of “clusteredness” and short average path lengths
in Erdös–Rényi graphs, cf. Subsection 2.2.2 on page 20, one would need massive
amounts of edges, as there is little order among them. In the real world however,
only relatively few edges are needed for both these characteristics. In 1999,
Watts and Strogatz defined this small–world concept [62], showed that many
real networks have small–world characteristics and introduced an algorithm for
their creation.

Before describing this algorithm and studying the characteristics of the
graphs generated with it, it is important to mention that the small–world
character can also be found in other types of networks, for example in scale–free
graphs which we will present in Section 2.4 on page 28.

A typical small–world graph is shown in Figure 2.5(a).

2.3.1 Generation of small–world graphs

The idea The idea behind generating graphs with small–world character is
quite simple and, on second though, also quite intuitive: start with order and
randomize a bit. Starting off with order allows for the relatively high clustering,
yet randomizing by rewiring some edges creates “long distance shortcuts” which
are responsible for the relatively low average path length.

Watts and Strogatz chose a one dimensional lattice with a periodic bounding
condition as starting point: take n nodes, lay them out to form a “ring” and
connect each node with its k0 neighbours. In order for that lattice to be
symmetrical, k0 must be even (for example two nodes to the “left” and two
nodes to the “right” would mean k0 = 4). Once this regular lattice is generated,

24 CHAPTER 2. RANDOM GRAPHS

pr = 0 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
increasing randomness

pr = 1

Figure 2.4: The Watts–Strogatz model, transition from order to randomness
through rewiring, in this graph with n = 16 and k0 = 4 (so e = 32).

edges are randomly rewired — random both in terms of whether or not to be
rewired in the first place, and, if so, where to connect the free end to.

This process is depicted in Figure 2.4: the rewiring probability pr passes
from 0, corresponding to the initial regular 1D ring lattice (here with k0 = 4)
via a phase between order and complete randomness (where “local” clusters are
connected via a few long range connections) to complete randomness (pr = 1),
corresponding to an Erdös–Rényi graph on n nodes and e = n · k0/2 edges.

The code With this process in mind, we can now take a look at the implemen-
tation shown in Listing 2.2 on the next page. Like most of the other functions
in this document, this one is also designed to save some work by supposing
undirected graphs and only working on the upper triangular part (adding the
transposed in the last step).

A few comments on techniques involved: after creation of the regular lattice
in Lines 5–8, the algorithm looks at each edge rolling its virtual die to “decide”
whether to rewire that particular edge. If we take only the upper triangular
part of the adjacency matrix, rewiring an edge corresponds to “shifting” the
corresponding 1–entry to somewhere else within the same row.

To implement that, we fetch a random permutation of {1, 2, . . . , n} and
each element as a target for where to reconnect the edge to. Conditions for
that are that the spot is neither occupied (Line 21) nor on the main diagonal
(Line 22). The first such spot to be found is then used to create an edge there
(Lines 28–32), and the old edge gets “deleted” (Line 35).

2.3.2 Properties

Before commenting on the “emergence” of small–world behaviour, that is lo-
cated somewhere between the two extremes of pr = 0 and pr = 1, we would
like to present the “list” of characteristic values for this type of graph.

Characteristic Values Again, proofs can be found in the references:

2.3. THE WATTS–STROGATZ OR “SMALL–WORLD” MODEL 25

1 function [A] = gen_sw(n , k_init , p)

2

3 % step 1: generate regular 1D−lattice
4 A = logical(sparse(n,n));

5 for k=1:k_init/2

6 A = A | spdiags(ones(n,1),k,n,n);

7 A = A | spdiags(ones(n,1),(n−k),n,n);
8 end

9

10 % step 2: rewire: look at each edge and 'decide' whether to rewire

11 [i,j] = find(A); rewire_counter = 0;

12

13 for curr=1:length(i)

14

15 if rand ≤ p % go ahead, rewire !

16 rewire_counter = rewire_counter+1;

17

18 % now find a 'spot' for the new egde...

19 l = 1; j_attempt = randperm(n);% rand. perm. of col. ind.

20 % ...which is neither occupied...

21 while A(i(curr),j_attempt(l))||A(j_attempt(l),i(curr)) ...

22 || (j_attempt(l) == i(curr) % ...nor on main diag

23 l = l+1;

24 end

25

26 % found candidate −> perform the actual rewiring:

27 % create new edge in upper trinang. part

28 if i(curr) > j_attempt(l) % would end up in lower triang.

29 A(j_attempt(l),i(curr)) = true;

30 else

31 A(i(curr),j_attempt(l)) = true;

32 end

33

34 % and remove old edge

35 A(i(curr),j(curr)) = false;

36 end

37 end

38 % finally add transposed to get the full, symm. adj. matrix

39 A = A | A';

Listing 2.2: Generating program for small–world graphs using the
Watts–Strogatz model.

Degree distribution Found in [6]:

p(k) =

min{k−k̃0,k̃0}
∑

n=0

Cn
k̃0

(1− pr)
npk̃0−n

r

(prk̃0)
a

a!
exp (−prk̃0) (2.4)

for k ≥ k0/2, with k̃0 = k0/2 and a = k − k̃0 − n. A typical degree
distribution is shown in Figure 2.5(b).

Average node degree As edges are only rewired, obviously

〈k〉 = k0

26 CHAPTER 2. RANDOM GRAPHS

Average path length To the best of our knowledge, an exact solution has not
be found yet. In [49] however, we find a good approximation for a model
very similar to the one discussed here. The only difference is that instead
of rewiring edges, shortcuts are added directly (thus leaving the original
ring lattice “intact”, but increasing the total number of edges).5 There,

〈l〉 ≃ ξ

k0

√

1 + 2ξ/n
tanh−1

(

1
√

1 + 2ξ/n

)

(2.5)

where ξ = 2/(k0ps) with ps is the probability similar to the Erdös–Rényi
model of having a shortcut between two nodes.

Diameter Again, to the best of our knowledge no firm analytic results are
available at the time of writing.

Clustering coefficient A slightly different but equivalent definition of the clus-
tering coefficient than that given in Subsection 1.4.4 would be to define it
as the fraction of the mean number of edges between the neighbours of a
node and the mean number of possible edges between those neighbours.

For this definition of clustering, we find in [6]:

〈c〉′ = 〈c〉′0(1− p)3 =
3(k0/2− 1)

2(k0 − 1)
(1− p)3

and the deviation from 〈c〉 is of order 1/n. So we can readily say

〈c〉 ≃ 〈c〉0(1− p)3 (2.6)

the index 0 denoting, again, the value for pr = 0.6

Influence of the rewiring probability As we have mentioned earlier on, typical
small–world graphs show a remarkable combination of high clustering (which
is a local property) and short average path lengths (a global measure).

In order to stick closely to properties of some real networks (like social
networks), Watts and Strogatz were interested in graphs with many vertices
but few connections between them (but not so few that the graph would be in
danger of becoming disconnected). They specified their request by demanding

n≫ k0 ≫ lnn≫ 1

Here, k ≫ lnn guarantees that the resulting graph will be connected, [10].
With their model (and appropriately chosen parameters fulfilling this request)
it is easy to obtain the desired high clustering and short distances. Again,
an Erdös–Rényi graph with similar properties would need to have significantly
more edges.

However, even with the Watts–Strogatz model the desired properties are
not always present. In fact, the emergence of this behaviour depends strongly
on pr. If we look at both extremes, we find

5 Both models are equivalent for sufficiently small pr respectively ps and large n.
6 It can easily be established that 〈c〉0 =

3(k0−2)
4(k0−1)

.

2.3. THE WATTS–STROGATZ OR “SMALL–WORLD” MODEL 27

(a)

Node Degree GGGGGGGGGGA

F
r
a
c
t
io

n
o
f
n
o
d
e
s

in
%

GG
G
G
G
G
G
G
G
GA

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

(b)

Figure 2.5: (a) A small–world graph with n = 100 and e = 200 , generated
with the Watts–Strogatz model using pr = 0 .05 and k0 = 4 .
(b) Degree distributions of 50 small–world graphs generated using
n = 3000 , k0 = 6 and pr = 0 .01 . The dashed line has been plotted us-
ing the distribution Equation (2.4) on page 25.

〈c〉0 =
3(k0 − 2)

4(k0 − 1)
≃ 3

4
GGGGGGGGGGGGGGGGGGA 〈c〉1 ∼

k0

n
0→pr→1

〈l〉0 =
n(n + k0 − 2)

2k0(n− 1)
≃ n

2k0
GGGGGGGGGGGA 〈l〉1 ∼

lnn

ln(k0 − 1)

thus for small pr, 〈c〉 seems to be large and 〈l〉 scales linearly with n, whereas
for large pr the clustering coefficient seems to decrease with the system size
and the average path length only scales logarithmically with n.

Both these extremes and intuition seem to suggest that a large 〈c〉 is always
associated with a large 〈l〉, and small clustering with short path lengths.

Figure 2.6 on the following page however shows that 〈c〉 does not decrease
as fast as 〈l〉, leaving a broad range of values pr resulting in networks that are
highly clustered, but still with small characteristic path length — Watts and
Strogatz’ small–world networks.

The prediction for the clustering coefficient fits perfectly the numerical re-
sults; however the theoretical results for the average path length stay below
the simulated data. This is surely due to the fact that the slightly different
model they are valid for adds shortcuts instead of rewiring edges. The resulting
increased number of edges allows for shorter average path lengths than in the
case where edges are only rewired.

We shall now continue with our third and last random graph model, the
Barabási–Albert model.

28 CHAPTER 2. RANDOM GRAPHS

pr GGGGGGA

〈l〉/〈l〉0 〈c〉/〈c〉0

0.00001 0.0001 0.001 0.01 0.1 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.6: Normalized clustering coefficient 〈c〉 (�) and average path length
〈l〉 (�), as a function of pr, normalized with the corresponding values
for the regular lattice i. e. pr = 0).
Each data point corresponds to the average value over 50 independently
generated small–world graphs on n = 1000 nodes with k0 = 10 neigh-
bours per node, normalized by the corresponding value for pr = 0 .
The dashed lines correspond to the predictions of Equation (2.5) respec-
tively Equation (2.6) on page 26.

2.4 The Barabási–Albert or “scale–free” Model

As we will see in Subsection 2.5.2 on page 35, many if not most of the large
real world networks appear to have a power law degree distribution

p(k) ∼ k−γ (2.7)

with the exponent γ usually somewhere between 1 and 4. This distribu-
tion deviates significantly from those characteristic to the Erdös–Rényi and
Watts–Strogatz models, especially in not having a typical or “meaningful” av-
erage value and in allowing for a few but very highly connected nodes. In
addition, the probability for a certain node to have a certain degree does not
depend on the size of the network. These facts are responsible for the term
“absence of scale”.

One model to account for similar degree distributions and characteristics
is based on the assumption that these properties must be due in part to the

2.4. THE BARABÁSI–ALBERT OR “SCALE–FREE” MODEL 29

evolution inherent to certain types of networks: on one hand they usually
show some sort of growth, and, on the other hand, new nodes introduced into
the network usually connect preferentially to the more highly connected nodes
already present in the network. This non uniform connection probability seems
to introduce certain correlations and dependences that allow for some of the
specific attributes of these graphs.

In addition, as the power law degree distribution allows for some (very few
but) extremely high node degrees, many real world networks have a certain
maximum node degree, or cutoff, that limits or bounds the range of node
degrees. Here, the plot of the degree distribution deviates from a straight line
in a double logarithmic plot to show an exponential or “Gaussian” tail. Amaral
et al. give a more detailed introduction to these phenomena, [3].

Building a suitable model for these types of networks has been an area
of high interest in the past few years and a multitude of models has since
arisen. Table III in [2] gives an excellent overview of the overwhelming number
of variations on the model. In this paper however, we will limit ourselves to
the seminal Barabási–Albert model, which gave rise to the burst of activity in
the field. A typical scale–free graph generated with their model is shown in
Figure 2.8(a).

2.4.1 Generation of scale–free graphs

The idea Although it is straightforward to generate networks with a specific
degree distribution (just by generating node degrees according to the specific
distribution and then randomly placing the edges accordingly), until lately,
those networks failed to show key properties observed in real world networks
with a power law distribution.

One reason for this was that the usual generating method did not reflect
the dynamical process that creates real world networks, introducing nontrivial
correlations that affect many topological properties. Seeing the evolution of
real world networks (like the world wide web, which started with a couple
of hundred pages, and now has grown to many billion pages), the generating
algorithm for an artificial network should also incorporate a similar growth
process as well as the preferential attachment (as, for example, some new page
is much more likely to link to an important page like www.google.com than to
some rather insignificant page).

Both ideas inspired the first model introduced by Barabási et al. in 1999, [4],
which generated a scale–free network with a power law degree distribution and
many of the properties encountered in real networks. This model allowed for
the first time to describe the inherent ordering principle observed in real world
networks. Its simple but elegant generating algorithm is the following:

(i) Growth: Start with a very small but fully connected graph on n0 nodes
(1 ≤ n0 ≪ n, n being the desired final number of nodes). At each
iteration step t, add one node with m edges that link the new node to m
nodes that already are in the system.

(ii) Preferential attachment : The “targets” for the m new edges to be placed
are not chosen with equal probability, but with probability proportional

30 CHAPTER 2. RANDOM GRAPHS

Figure 2.7: Growth of a scale–free graph using the Barabási–Albert model,
starting with n0 = 1 node and adding one node and m = 1 edge at each
step (these new edges are marked with).

to their respective degrees:

pa
(t)
i

(

k
(t)
i

)

=
k

(t)
i

∑n0+t−1
j=1 k

(t)
j

(2.8)

where pa
(t)
i denotes the probability that the new node attaches an edge to

node i, which has degree k
(t)
i at step t.

So in order to get a network with n nodes, this algorithm needs to be run
for t = n− n0 steps, resulting in a total of (n− n0) ·m edges.

The attentive reader should immediately ask: what happens at t = 1 for
n0 = 1, when the sum in the denominator of Equation (2.8) is zero? Well,
in this particular case we need some “faking”, setting pa

(0)
1 to 1 to start off the

algorithm.
Figure 2.7 shows an example of the first nine steps of generating a scale–free

graph using the Barabási–Albert model described above, starting off with n0 =
1 node and adding m = 1 edge with each newly introduced node.

The code Our implementation of this algorithm, shown in Listing 2.3 on
page 32, uses a “Monte Carlo” technique to actually place the edges according
to the particular distribution induced by the preferential attachment Equa-
tion (2.8).

For that, we calculate the cumulative probabilities in Line 26. There, the
pcum vector looks like

(

pa1(k1) , pa1(k1) + pa2(k2) , . . . ,
∑

i pai(ki)
)

some step iteration step. This vector calculated, we can generate a uniformly
distributed random number between zero and one and then see in which “area”
of the pcum vector it “falls”: larger pc’s produce broader intervals in pcum and
are thus more likely to “catch” the random number, i. e. get the edge. This is
done in Line 36, where the first element in the temp corresponds to the node
number that produced the interval the random number fell in.

We placed a while–loop around this procedure that keeps repeating this
process until an “empty” spot for the new edge has been found (the more
“attractive” a location is the more likely it will be that an edge has been placed
there already in a previous step), Line 33.

2.4. THE BARABÁSI–ALBERT OR “SCALE–FREE” MODEL 31

Finally, in order to create a network with n nodes, n − n0 repetitions are
needed (Line 15), within each of which m edge–placement–runs need to be
carried out (Line 30).

2.4.2 Properties

Now that we are able to generate the basic type of scale–free networks, let’s
take a closer look at their properties, starting off with the characteristic values.

Characteristic Values Again, proofs can be found in the references:

Degree distribution Found in [2]

p(k) =
2m(m + 1)

k(k + 1)(k + 2)
∼ k−3 (2.9)

A typical degree distribution is shown in Figure 2.8(b).

Average node degree Straightforward:

〈k〉 = 2e/n =
2m(n− no)

n
≃ 2m

Average path length In [23] it is shown that in a good approximation

〈l〉 ≃ lnn− ln(m/2)− 1− γ

ln(ln n) + ln(m/2)
+

3

2
(2.10)

Diameter Using a similar model, with the difference of allowing for multiple
edges and self loops, we find in [12] for very large n and m ≥ 2 that d is
usually concentrated on a few values around

d ≈ lnn

ln(ln n)

For m = 1 it is shown in the same paper that d scales as lnn.

Clustering coefficient We find in [22]:

〈c〉 =
6m2

[

(m + 1)2(ln t)2 − 8m ln t + 8m
]

8(m− 1)(6m2 + 8m + 3)t

Ultra small–world If we take a look at Equation (2.10), we can see that for
large n the average path length scales as lnn/ ln(ln n), which increases much
more slowly than lnn, a suggested asymptotic form for graphs generated by
both the Watts–Strogatz and Erdös–Rényi model, see for example [49].

Besides an alternative way of finding the approximation 〈l〉 ∼ lnn/ ln(ln n),
it is claimed in [16] that scale–free networks are “ultrasmall”. In Figure 2.9
on page 34 we compare the growth of 〈l〉 as n increases. To make the graphs
comparable, the respective generating parameters have been chosen in a way
that for each graph e ≃ 4n. This relatively high number of edges is needed

32 CHAPTER 2. RANDOM GRAPHS

1 function [A] = gen_sf(n , n_0 , m , quiet)

2

3 if n_0 == 1 % danger of dividing by zero (k=0...)

4 tweak = true;

5 else % everything is fine

6 tweak = false;

7 end

8

9 % create empty A

10 A = logical(sparse(n,n));

11

12 % create initial (fully connected) cluster:

13 A(1:n_0,1:n_0) = true(n_0,n_0) − speye(n_0,n_0);

14

15 for t = 1:n−n_0 % time−step−loop
16

17 if tweak

18 pcum = 1; % faked cumulative sum for n_0=0 @ t=1

19 if t > 1 % out of trouble −> stop faking

20 tweak = false;

21 % there are 2 nodes and 1 edge −> p_a = (1/2 , 1/2)

22 pcum = [.5 1];

23 end

24 else % not tweaking − use p_a_i = deg_i / sum(deg)

25 deg = sum(A(1:n_0+t−1,1:n_0+t−1) , 2); % node degrees

26 pcum = cumsum(deg / sum(deg)); % cum probs

27 end

28

29 % now, let's place the m new edges

30 for j = 1:m

31

32 succeeded = false;

33 while ¬succeeded % while not succeeded placing new edge...

34

35 % determine target for new edge

36 temp = find(pcum>rand);

37

38 % check if we can place the edge here

39 if ¬A(temp(1),n_0+t)
40 succeeded = true;

41 end

42 end % placement−loop
43

44 % now, place the edge

45 A(temp(1),n_0+t) = true; A(n_0+t,temp(1)) = true;

46

47 end % edge−loop
48

49 end % node−loop

Listing 2.3: Generating program for scale–free networks using the
Barabási–Albert algorithm.

2.5. COMPARISON AND APPLICATIONS 33

(a)

Node Degree GGGGGGGGGGA

F
r
a
c
t
io

n
o
f
n
o
d
e
s

in
%

GG
G
G
G
G
G
G
G
GA

1 10 100

0 20 40 60 80 100 120 140

0.1

1

10

100

0

10

20

30

40

50

60

70

(b)

Figure 2.8: (a) A scale–free graph with n = 100 and e = 196 , generated with
the Barabási–Albert model using n0 = 2 and m = 2 .
(b) Degree distributions of 50 scale–free graphs generated using
n = 3000 , n0 = 1 and m = 1 . The dashed line has been plotted using
the distribution Equation (2.9) on page 31. The increasing “spreading”
for higher node degrees in the double logarithmic inset is due to the dis-
crete nature and the resulting limited “resolution” of the experiment.

to “ensure” connected Erdös–Rényi graphs (to be able to compare the average
path lengths).

We can see that the average path length for scale–free graphs grows much
slower than for the small–world graphs and slightly slower than for Erdös–Rényi
graphs. The “separation” between the latter two however increases with grow-
ing n.

The following section is dedicated to a more extensive comparison of the three
models we have now introduced.

2.5 Comparison and applications

2.5.1 Characteristic values

To start this section, we present a lineup of the three models with respect
to their characteristic values. This is done empirically by calculating these
values using the algorithms described in the first chapter for the three models
generated with the algorithms described above.

Table 2.1 on page 35 shows next to each calculated value — which is the
average value of 200 independent repetitions per graph model and characteristic
value — the theoretical value given by the lineup of equations we presented for
each model.

The graphs used each have n = 2000 nodes and a targeted e ≃ 4000 nodes.
We generated them using the following parameters:

– Erdös–Rényi: n = 2000, p = 4/1998

34 CHAPTER 2. RANDOM GRAPHS

n GGGGGGA

〈l〉
G
G
G
G
G
G
A

10 100 1000
0

5

10

15

Figure 2.9: Evolution of average path lengths as network size (and number of
edges e ≃ 4n) increases. The graph models used are: Erdös–Rényi with
p = 8/(n − 1) (�), Watts–Strogatz with k0 = 8 and pr = 0 .01 (�) and
Barabási–Albert with n0 = m = 4 (×).
Each datapoint corresponds to the average value from 5 independent
runs, the dashed lines show the respective predicted values.

– Watts–Strogatz: n = 2000, k0 = 4, pr = 0.016 7

– Barabási–Albert: n = 2000, n0 = 2, m = 2

The results from these runs give us some numerical evidence for and some
idea of validity of the specific features and predicted values mentioned above:

Average node degree These are, as expected, roughly the same as the net-
works are targeted to have twice the number of edges than nodes.

Average path length We can see that the scale–free networks as well as the
Erdös–Rényi type networks perform much better than Watts–Strogatz net-
works when it comes to the average distance between two nodes. We can also
see the “ultrasmall” character of the scale–free graphs as they have even shorter
path lengths than the Erdös–Rényi ones. The predicted values are also quite in
agreement with the numerical results (but for deviation in the Watts–Strogatz
model), as we could also see in Figure 2.9.

7 This specific value for pr has been chosen using a plot similar to Figure 2.6 on page 28
to create maximum clustering but at the same time shortest average path lengths.

2.5. COMPARISON AND APPLICATIONS 35

Diameter These values are unfortunately relatively different from their pre-
dictions, or even undetermined as in the Watts–Strogatz case. Concerning
the deviations, however, the values are still in accordance with the bounds
surrounding them (see [15] and [12] for further details).

Clustering coefficient As expected, clustering is much higher in small–world
networks than in the others. As we mentioned earlier in the introduction to
the Watts–Strogatz model, the scale–free graphs also shows some small–world
behaviour, as their clustering coefficient is still about 8 times higher than that
of a random graph. For every graph model, prediction and simulation agree
very well.

Value
Erdös–Rényi Watts–Strogatz Barabási–Albert

num. theor. num. theor. num. theor.

〈k〉 4.001 4.000 4.000 4.000 3.996 3.996
〈l〉 5.599 5.565 25.549 18.723 4.373 4.470
d 11.850 5.481 62.570 ? 7.990 3.748
〈c〉 0.002 0.002 0.477 0.476 0.015 0.015

Table 2.1: Comparison of the characteristic values between the three network
models as well as between the calculated and theoretical values. Each
of the “numerical” values are the average values gained from 200 in-
dependently generated networks having n = 2000 nodes and a targeted
e = 4000 edges.

2.5.2 The real world

To close this chapter on random graphs we would like to present some examples
of real networks whose characteristics can be particularly well reflected by some
of the models presented above.

World wide web and internet The world wide web (as of the network of
web pages connected by hyperlinks) and also the internet (as of the network of
interconnected computers, routers, servers, etc.) are the largest networks with
quite precisely measurable topological data available today.

In contrast to the internet however, the world wide web is usually approxi-
mated by directed graphs, resulting in two degree distributions for web pages
— one for in– and another one for the out–degrees of pages. It has been shown
in several papers (to name a few [14, 26, 60]) that the internet (on router
and domain level) as well as the world wide web (at domain and page level)
has node degrees displaying a clear power law distribution with γ for in– and
out–degrees usually between 2.0 and 2.5.

Phone call networks Another intuitive network that can be established is
that of phone call patterns, where phone numbers are the nodes, connected
by (directed) arcs representing calls. Studies of long distance calls on a single

36 CHAPTER 2. RANDOM GRAPHS

day [1] have shown that such graph also has a power law in– and out–degree
distribution with exponent γ ≃ 2.1.

Citation networks A scale free degree distribution can also be found in graphs
describing citations, nodes being documents and directed edges citations be-
tween them. Highly connected nodes would correspond to some few seminal
papers where as larger numbers of less significant papers have only few connec-
tions. A study [54] showed that the probability of a paper being cited k times
can be described with a power law, using γ ≃ 3.

Human sexual contacts Based on a Swedish survey from 1996 [40], an inter-
esting study [41] shows that the number of sexual partners up to 12 months
prior to the survey is distributed according to a power law, with exponent of
about γ ≃ 2.4. Besides that, the data and heuristic explanations show that
these networks are consistent with the preferential attachment mechanism dis-
cussed above.

Collaboration networks Large and publicly available databases like IMDB8

or arXiv.org9 allow close studies of another set of networks that can be estab-
lished, namely those capturing collaborations. Here, actors or scientists make
up the nodes, and are linked together if they have starred together in a movie
respectively were co–authors of some paper.

Several papers show studies of these networks, [5, 50, 62], and find power
law exponents usually around γ = 2.4.

Neural networks and power grids Neural networks like those of small worms
or power grids like those spanning the western United States [3] show similar
properties, namely that the average path lengths are close to those of compa-
rable Erdös–Rényi graphs, but clustering is significantly higher.

In [62], when Watts et al. introduced the small–world model, they showed
that the properties of these networks as well as the previous two social networks
can be reflected very well by their model.

Protein folding In general, protein folding can be seen as the process a protein
goes through in order to assume its functional shape or conformation. As
protein molecules are chains of simple, unbranched amino acids, it is through
coiling into a certain three–dimensional shape that they perform their specific
biological function.

During that process, the different (consecutive) configurations a protein
goes through can be described with a graph, where each node corresponds to
a particular conformation, two nodes being linked together if they can be ob-
tained from each other by an elementary move. Several papers show that these
networks show significant small–world characteristics, [53, 55, 61] and typically
have scale–free degree distributions.

8 That is the Internet Movie Database (http://www.imdb.com)
9 The e–Print archive arXiv.org (http://www.arxiv.org) actually provides free and publicly

accessible copies of the majority of the papers and articles cited in this document.

2.5. COMPARISON AND APPLICATIONS 37

This biologically motivated topic will actually be treated in more detail in
Chapter 5. We shall now continue, however, with a number of ranking schemes
that we will use to identify important nodes in a network.

C H A P T E R 3

Ranking schemes

We present methods to rank nodes, including node

degrees, algorithms like HITS and PageRank,

centrality based measures like excentricity, status or

centroid value, and “damage”.

3.1 Introduction

With the necessary terminology that we have gathered in the first chapter
we discussed three major models for random graphs. With these models it
is easy to generate graphs of arbitrary size, but also modeling the real world
confronts us in many cases with large if not gigantic networks. One just has
to think of the snapshot the search engine Google has taken of the internet
by indexing more than 8 billion pages and capturing the hyperlinks between
these pages, [25]. But also metabolic networks or protein–protein interaction
networks can currently have several thousand nodes, see Chapter 5.

The sheer size of these graphs makes it quite impossible to analyse them by
just “looking” at them. A much more systematic approach needs to be taken.

In many applications one question almost always arises, and has gotten a
lot of attention in the last ten years especially in relation with information
retrieval systems like Google:

“How do I find the most ‘important’ nodes in a network?”

Ignoring the actual interpretation of “importance” for the moment, we could
answer the above question in a detailed and elegant way by establishing a
ranking of the nodes. This can be done by calculating some sort of “score” for
each node in the network — desirably in a systematic and sensible way.

The actual notion of importance that a ranking scheme attributes to the
scores depends, of course, on the actual measure of importance used, and has
to ultimately prove itself in the actual practical application.

Before focusing on that, which is done in the last chapter, we shall first
present a variety of classical and more recent measures of importance accom-
panied by Matlab implementations of their algorithms.

39

40 CHAPTER 3. RANKING SCHEMES

3.2 Node degrees

Maybe one of the most immediate measures of importance may be the degree
of a node. The idea behind this method is, that the more neighbors a node has
the more influence it may have.

However, as node degrees are an intrinsically local measure, it cannot fully
account for the global influence a node may have. In fact, node degrees only
allow for a meaningful interpretation if the graph in question is a typical in-
stance of a known statistical ensemble, like coming from the Erdös–Rényi,
Barabási–Albert or Watts–Strogatz model.

Moreover, the node degree can be a very granulated measure. In case of a
network where two thirds of the nodes have degree 1 for example there would
not be too much significance in the resulting ranking.

Its calculation being very easy and fast to accomplish (simply calculate the
row sums of the adjacency matrix) it can be used as a rough first approximation.
However, the shortcomings mentioned above have motivated the development
of more complex measures, like HITS and PageRank.

3.3 HITS

Jon Kleinberg, at the time assistant professor at Cornell University, started to
develop his Hypertext Induced Topic Search in 1997. Today, HITS is used in
the search engine TEOMA. Kleinberg’s, at the time very innovative, idea
was to exploit the web’s hyperlink structure [35]. Each page is represented as
a node in a very large directed graph, the edges corresponding to hyperlinks.

An informative, valuable, authoritative page is usually pointed to by a large
number of other pages on the same topic, and hence has many inlinks.

Vice versa, a web page having many high quality outlinks is also a very
useful resource, especially when doing some initial research on a specific topic.
In that case, we could trust this page to lead us to a number of good pages on
the subject.

So the concepts of authorities (a document having several inlinks) and hubs
(a document having several outlinks, cf. Figure 3.1 on the next page) are used
to give each page two scores — an authority and a hub score — in a mutually
reinforcing way, using the thesis

“Good hubs point to good authorities;
Good authorities are pointed to by good hubs”

An analogy would be to look at the head of department of some faculty being
a hub, knowing what all the different specialists (authorities) are working on
and being able to point you to the right person for the specific question you
have. Of course, the head of department would also be a specialist in some
field, and other researchers (also being hubs to some extent) may point you to
him. Hence the head of department can be given both an authority score and
a hub score.

Where for more experienced users it is an advantage to have two rankings
resulting from one query, these two rankings are usually combined into a single
ranking which is presented at the actual front end of an information retrieval
system like TEOMA.

3.3. HITS 41

1

2

3

4

5

A

(a)

1

2

3

4

5

H

(b)

Figure 3.1: Example for an authority (a) and a hub node (b).

Let’s now take a closer look at the implementation of HITS in an internet
search engine. The processing of a query usually involves two main steps:

1. Building the neighborhood graph

2. Calculating the scores

Later, however, we will only implement the second step as we already have the
graphs we would like to apply the algorithm to. For reasons of completeness
though we shall describe both steps, first by explaining how the neighborhood
graph is obtained from a (very large) set of documents.

3.3.1 Building the neighborhood graph

First, all documents containing the query term or terms need to be identified.
One simple method for this would be to look up each term in an inverted term–
document file. That file is basically like a (very complete) index in a book. It
might look like this:

term 1 (Aachen) doc 4, doc 437, doc 8471, . . .
...

term 9514 (Lutero) doc 984, doc 2578, doc 12543, . . .
...

term 59040 (zymurgy) doc 64, doc 768, doc 73443, . . .

For each term of the query, this file is consulted to collect all relevant
document ids. Those are put into the subset V0 which is then used to build a
directed graph G0. The elements of V0 form the nodes of that graph, whereas
the arcs represent the links between them.
G0 is then expanded by adding all the nodes pointed to by and pointing

to the documents in V0. Let’s call this expanded subset V. This expansion
allows for some very limited latent semantic associations to be captured (for
example if one query term was car, it is quite likely that some pages containing
automobile are fetched as well). As with this expansion process V can become

42 CHAPTER 3. RANKING SCHEMES

very large, in practice the number of additional nodes to be added to G0 is
usually restricted to, say, 100 per node.

Once the expansion process of G0 is completed (let’s call the resulting graph
G = (V, E)), the adjancency matrix A can be formed for G . Note that the order
of A is typically much smaller than the total number of documents on the web.

3.3.2 Calculating the scores

The power method

Let’s quickly recall the HITS thesis: good authorities are pointed to by good
hubs and good hubs point to good authorities. As said earlier, each page i in
V gets two scores: an authority score xi and a hub score yi. Given some initial
scores x

(0)
i and y

(0)
i , we can then iteratively refine the scores by computing

x
(t)
i =

∑

j:(j,i)∈E

y
(t−1)
j and y

(t)
i =

∑

j:(i,j)∈E

x
(t)
j for t = 1, 2, 3,

where x
(t)
i and y

(t)
i are the authority and hub scores respectively of node i at

iteration step t. These two equations can be written in matrix form using the
adjacency matrix A:

x(t) = AT y(t−1) and y(t) = Ax(t) for t = 1, 2, 3, (3.1)

Note that these two equations can be simplified by substitution to

x(t) = ATAx(t−1) (3.2a)

y(t) = AAT y(t−1) (3.2b)

for t = 1, 2, 3,
In fact, Equation (3.2) define a well known and investigated iterative process

usually referred to as the power method. It is obvious that if it converges, it
will do so toward eigenvectors of authority matrix ATA and hub matrix AAT .
More over, in this case it will converge toward the dominant eigenvectors of
these matrices, as we will see in the next subsection.

So calculation of our desired authority and hub score vectors x and y can be
interpreted as finding dominant right–hand eigenvectors of the authority and
hub matrices respectively. As the two of them are closely connected, we will
concentrate on Equation (3.2a), as y can be easily obtained from the second
equation in Equation (3.1).

Convergence

The “classic” power method, [31], assumes that we are given a diagonalizable
n × n matrix M whose distinct eigenvalues {λ1, λ2, . . . , λm}, m ≤ n can be
ordered such that |λ1| ≥ |λ2| ≥ . . . ≥ |λm|, and an initial vector which must not
be orthogonal to the eigenspace belonging to λ1. We then compute iteratively

x(t) = Mx(t−1) (3.3a)

x(t) ←− x(t)

norm(x(t))
(3.3b)

3.3. HITS 43

where any norm in the Rn may be used. So in order to make the iteration Equa-
tion (3.3a) converge, one has to normalise x(t) at each step. If Equation (3.3)
converges as t tends to infinity, x(t) will converge toward an eigenvector of M ,
or in case of the HITS algorithm toward an eigenvector of ATA.

As ATA is symmetric1, positive semidefinite2 and nonnegative3, it is always
diagonalizable and its eigenvalues {λ1, λ2, . . . , λm} are necessarily all real and
nonnegative (in other words, it is not possible to have several eigenvalues on
the spectral circle). Consequently, by standard result from linear algebra [24],
the HITS specific power method will always converge.

Uniqueness

However, it is possible that for different initial conditions different limiting
vectors occur. If ATA or some power of it is positive, then the dominant eigen-
value λ1 has multiplicity 1 (one of the properties guaranteed by the Perron–
Frobenius Theorem, see Theorems A.2 and A.3 in the Appendix on page 98)
and the power method will converge toward the unique normalized dominant
(Perron–) eigenvector associated to λ1. But if λ1 is a repeated root of the
characteristic polynomial, i. e. has multiplicity greater than 1, the associated
eigenspace will be multidimensional and the power method would converge to
some point inside that space. However, in general, the limiting vector is not
uniquely determined in this case.

A simple example taken from [20] illustrates this. There,

A =









· · · ·
1 · · ·
1 · · ·
· 1 1 ·









and ATA =









2 · · ·
· 1 1 ·
· 1 1 ·
· · · ·









The authority matrix ATA has two distinct eigenvalues λ1 = 2 and λ2 = 0,
each with algebraic (and geometric) multiplicity two. For

x(0) =
(

1/4 1/4 1/4 1/4
)

T

the power method with 1–norm4 normalization would converge to

x =
(

1/3 1/3 1/3 0
)

T

whereas for

x(0) =
(

1/4 1/8 1/8 1/2
)

T

it converges to

x =
(

1/2 1/4 1/4 0
)

T

1
`

ATA
´T

= (AT)
`

AT
´T

= ATA
2 xT (ATA)x = (Ax)T (Ax) ≥ 0
3 A � 0 ⇒ ATA � 0
4 ‖x‖1 =

P

i |xi|

44 CHAPTER 3. RANKING SCHEMES

An explanation In fact, at the heart of this uniqueness problem is the re-
ducibility of ATA. If it is irreducible, then it has a unique (up to a scalar
multiple) dominant Perron eigenvector and the uniqueness problem cannot
arise. This follows directly from the Perron–Frobenius Theorem. It ensures
that if ATA is irreducible it possesses an unique dominant positive eigenvec-
tor, and that’s the one the power method will converge to (can easily be seen
in Equation (3.4)).

However, in the case of reducibility, obviously ATA is not positive by itself
nor will there be a positive power of it that is strictly positive. So there is no
unique dominant eigenvector and convergence depends on the initial condition.

Be aware that irreducibility of A is not sufficient for irreducibility of ATA:
A simple example can demonstrate this potential problem. Choosing a cycle of
length n (which obviously is strongly connected, hence irreducible) corresponds
to A = Π n, where Π n is a permutation of the identity matrix of order n ≥ 2.
It follows ATA = Π

T
nΠ n = Π

−1
n Π n = idn in this case (as Π n is orthogonal).

The identity matrix being reducible, we have an irreducible adjacency matrix
A = Π n resulting in a reducible authority matrix ATA = idn.

PageRank encounters the same uniqueness problem, and a similar trick as
we shall describe for PageRank (cf. Subsection 3.4.2 on page 48) may be applied
here order to force uniqueness. Another possibility would be not to randomly
initialize the score vectors, but to always start off with x(0) = y(0) = 1n/n,
which guarantees convergence to the same limit. A more elegant way however
is suggested in [45] using the so–called “exponentiated input to HITS”.

Rate of convergence

The convergence and uniqueness issues above as well as the rate of convergence
follow directly from general results on the power method, see for example [24].
The iteration equation Equation (3.3) on page 42 in the case where the domi-
nant eigenvalue has multiplicity 1 can be written as follows:

Assume that M := ATA is irreducible. As M is symmetric, it has n mu-
tually orthogonal eigenvectors ν1, . . . ,νn (corresponding to the n eigenvalues
λ1, λ2, . . . , λn with |λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn|) which form a basis of Rn.
We thus may write the starting vector x(0) as a linear combination

x(0) = c1ν1 + . . . + cnνn

If c1 6= 0 — in other words demanding that the initial vector is not or-
thogonal to the dominant eigenvector ν1 — it follows from Equation (3.3) on
page 42 that at iteration step t

x(t) = M tx(0) = c1λ
t
1



ν1 +

n
∑

j=2

cj

c1

(

λj

λ1

)t

νj



 (3.4)

Here it is clear that the error is of the order of (λ2/λ1)
t and hence the rate of

convergence is dictated by the ratio of λ2/λ1 which is particularly important
for the PageRank algorithm.

If M had been reducible, Equation (3.4) would have more than one term
before the summation spanning the multidimensional eigenspace into which the
power method would converge to, depending on the initial condition (starting
vector).

3.3. HITS 45

3.3.3 Implementation

To close this section on HITS we now take a look at Listing 3.1 which is a
simple way of implementing the basic algorithm that calculates the scores for
a given network.

The algorithm starts by defining an initial error (needed to enter the while–
loop in Line 12) and sets in Line 4 the precision to three decimal places more
than the minimum the number of nodes would require: if, for example, we
have 1000 nodes, we want at least 4 significant figures to be able to properly
distinguish between the scores (as all the scores are packed tightly into the
[0, 1] interval) — by adding three more figures we are certain to be “on the safe
side”. We also set x(0) = 1n/n.

Next, ATA is created (we need to convert A to the double format as ATA

needs to hold real numbers).
Then we perform the actual power method (Lines 12–17) with normalisation

at each step until sufficient precision is obtained. Finally, we use the simple
algebraic connection Equation (3.1) on page 42 to calculate y, Line 21.

1 function [x , y] = hits(A)

2

3 err = 42; % initial error

4 eps = 10^(−floor(log10(N)+1)−3); % error tolerance

5 x(:,1) = ones(n,1)/n; % initial auth. scores

6

7 A = double(A); % make sure A isn't a logical

8 ATA = A'*A; % create authority matrix

9

10 % power method iterations

11 k = 1;

12 while err > eps

13 k = k + 1; % increase counter

14 x(:,k) = ATA * x(:,k−1); % update x

15 x(:,k) = x(:,k) / sum(x(:,k)); % normalize x

16 err = abs(sum(x(:,k)−x(:,k−1))); % error

17 end

18

19 % calculate y algebraically

20 x = x(:,k);

21 y = A*x; y = y / sum(y);

Listing 3.1: An implementation of the HITS algorithm

With the implementation of the HITS algorithm we would like to move on
to another eigenvector based ranking scheme, namely the famous PageRank
algorithm.

46 CHAPTER 3. RANKING SCHEMES

3.4 PageRank

Since early 1996 Larry Page and Sergey Brin, at the time two Ph.D. candidates
at Stanford University, have been working on a new concept for a search engine
for the world wide web, [13, 52], which was first called “BackRub”, but later
renamed to “Google”5. In 1998 they founded Google Inc. as all the other major
search engine companies were not interested in their new system. The basis
of Google was and remains the PageRank algorithm, which, just like HITS,
analyzes the hyperlink structure of web to give a ranking for search results.
Let’s take a look at the basic concepts and some mathematical background.

3.4.1 Concept

After crawling and indexing the web, PageRank analyzes the link structure to
determine the “global” importance of a page. At query time, all query related
documents are retrieved from an inverted index and then ranked according to
their PageRanks, allowing for an almost instantaneous reply to user queries.

The “raw” google matrix

Basic idea The PageRank measure of importance of a page can be seen as
weighted votes from all the other pages, weighted by the importance of the
linking (voting) pages themselves and the number of outlinks of those pages:

r(P) =
∑

Q∈BP

r(Q)

|Q| (3.5)

where BP is the set of all pages pointing to page P , r(Q) being the PageRank
of page Q and |Q| representing the number of outlinks from page Q. So in
order to have a high PageRank, a page P wants to have as many inlinks as
possible, quality sites pointing at it with at best no other links on these pages.
This makes sense, when we consider that if the inlink is only one out of many
it might not be as important as being the sole reference on the linking page.

Iterative approach Because of the recursive definition of PageRank, compu-
tation of it necessarily needs iteration. So arbitrarily assign each of the n Pages
P1, . . . , Pn an initial ranking, say r(0)(Pi) = 1/n and then successively refine
their PageRanks by computing

r(t)(Pi) =
∑

Q∈BPi

r(t−1)(Q)

|Q| , for t = 1, 2, 3, . . . (3.6)

Combining all the PageRanks in a row vector πT
(t) =

(

r(t)(P1) . . . r(t)(Pn)
)

and creating a normalized hyperlink matrix P with

pij =

{

1/|Pi|, if Pi links to Pj

0, otherwise

5 The word “google” is a common spelling of “googol”, the term coined by Milton Sirotta.
In 1938 he was nine years old and a nephew of the American mathematician Edward Kasner,
who asked the boy to find a word for the number 10100 . . .

3.4. PAGERANK 47

again |Pi| being the number of outlinks from page Pi, we may rewrite Equa-
tion (3.6) on the preceding page as

πT
(t) = πT

(t−1)P , for t = 1, 2, 3, . . . (3.7)

Note that no self–links (self loops) are allowed, resulting in zero entries along
the main diagonal of P . One recognizes the power method, but this time
hopefully converging to a left hand eigenvector of P . If the limit exists, the
limiting vector πT is then defined as the PageRank vector.

Before moving on to some further interpretation, we will introduce a little
example to illustrate the above considerations. Figure 3.2 below shows a small
six node web graph.

1

2

3

4

5

6

Figure 3.2: Small web graph for PageRank illustration.

The normalized hyperlink or “raw” google matrix in this case would be

P =

















· 1/2 1/2 · · ·
· · · · · ·

1/3 1/3 · · 1/3 ·
· · · · 1/2 1/2
· · · 1/2 · 1/2
· · · 1 · ·

















(3.8)

For theoretical and practical reasons, P needs to be adjusted to some extent,
which we will discuss below.

Markov Chain

If we look at the raw google matrix P in Equation (3.8) it is nonnegative
with row sums equal to one or zero. The latter occurs if there are nodes with
no outlinks (also called “dangling”– or “leaf”–nodes), such as node 2 in our
example. Assuming, for the moment, that there are no dangling nodes, P is a
row stochastic matrix describing the evolution of a finite Markov chain6.

6 A common definition for a finite Markov chain, taken from [42], would be a process
determined by a finite set of n states {S1, . . . , Sn} and a set of transition probabilities pij ,
i, j = 1, 2, . . . , n. The process can only be in one state at a any time instant. If at time t

that process is in state Si, then at time t + 1 it will be in state Sj with probability pij , an
initial starting state being specified.

48 CHAPTER 3. RANKING SCHEMES

The Markov chain whose evolution P represents (given that there are no
rows with all zeros) can be interpreted as a random walk on the web: a user
infinitely surfing the world wide web by randomly clicking on one of the links
on each page with equal probability depending on the number of outlinks of
the current page. The probability of the surfer on page i clicking on the link
leading to page j would correspond to the entry pij .

As for nonnegative matrices, the dominant eigenvalue is bounded by the
minimum and maximum row sums [42], the Perron–eigenvalue of a stochastic
matrix is always 1. Consequently, if the PageRank iteration Equation (3.7) on
the previous page converges, it converges to the left–hand eigenvector πT of P

satisfying

πT = πT P with πT
1n = 1 (3.9)

This corresponds to the limiting, stationary or steady–state distribution of
the Markov chain [43]. Intuitively, one could think of it as the long term
distribution of the time spent on the different pages of our eternally surfing
world wide web user.

3.4.2 Computation

As mentioned before, calculating the PageRank comes down to solving the
left–hand eigenvector problem Equation (3.9). So if the dangling nodes are
taken care of, it seems that all one needs to do is iterate the power method long
enough until a satisfying degree of precision is reached. The problem is that, in
contrast to HITS, the occurring matrix is not based on a small subset of nodes
but on all the nodes of the world wide web. Google reported in November 2004
to have indexed more than 8 billion pages, hence the google matrix would be
8–billion–dimensional, [25]. This is the reason why the PageRank calculation
has been called “the worlds largest matrix computation” [48].

This is certainly a challenging topic, but as we won’t deal with matrices of
this size, we do not need to look at the practical issues in handling such a huge
matrix and calculations based on it.

Adjusting P

At this point we should rather direct our attention to how P needs to be
manipulated in order to assure convergence of the power method toward a
unique solution.

Taking care of dangling nodes In the above discussion we assumed that P

has no rows with all zeros. An easy remedy for this would be to replace the
zeros in these rows by 1/n–entries, where n is, of course, the order of P . This
modified version P̄ ,is called the transition matrix. An interpretation of this
modification would be that our passionate surfer randomly jumps to another
page (for example by manually entering its URL in the location bar), once he
arrived at a page where he has no links to click on.7

7 Google however uses a more realistic distribution than the uniform one as it is apparently
not always equally likely for him to jump to any other page on the web.

3.4. PAGERANK 49

For our small web from Figure 3.2 on page 47 this modification would lead
to the following transition matrix

P̄ =

















· 1/2 1/2 · · ·
1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 · · 1/3 ·
· · · · 1/2 1/2
· · · 1/2 · 1/2
· · · 1 · ·

















(3.10)

Fixing reducibility Another problem, that will almost always occur when deal-
ing with real web page data, is that P̄ will be reducible. The interpretation of
that would be that the Markov chain eventually gets trapped at some stage (in
some subgraph), which in return usually will depend on the initial conditions
chosen. This is the same uniqueness problem we had when dealing with HITS,
cf. Subsection 3.3.2 on page 43.

By reordering the states of the chain, the transition matrix P̄ can be made
to have the canonical form Equation (A.1) on page 97. There, once a state
in S2 is reached, the chain gets trapped in that set. Usually there are several
connected components instead of one single big one (the case of connectedness)
and the chain can end up in any one of them, depending on the initial condition
chosen.

To fix reducibility and convergence issues, the following convex combination
was suggested by Brin and Page as passe–partout solution, as it creates a
strictly positive matrix:

¯̄P = αP̄ + (1− α)
1n×n

n
≻ 0 (3.11)

with 1n×n being the n × n matrix with all ones and α ∈ [0, 1] the so–called
“fudge” factor (or more technically the “damping”–factor, as it limits the extent
to which a document’s rank can be inherited by the documents it links to).

A possible interpretation for α would be the surfer’s tendency to sometimes
“jump” directly to a different page by manually entering its URL into the
address bar. So (1 − α) can be seen as the probability that our passionate
world wide web user would “teleport” himself to any another page (with equal
probability), ignoring possible links on the current page.

This is a special case of the more general formulation

¯̄P = αP̄ + (1− α)1nvT (3.12)

where vT is the so–called personalization vector. This vector must be a prob-
ability vector and each element can be interpreted as the probability that our
surfer would “teleport” himself to the corresponding page. A non–uniform dis-
tribution makes much more sense, as it is not equally as likely to enter any
possible URL.

3.4.3 Iterating

Rate of convergence

Using the matrix given by Equation (3.11) has a very nice side effect. As
pointed out in Subsection 3.3.2 on page 44, the rate of convergence is gov-

50 CHAPTER 3. RANKING SCHEMES

erned by the degree of separation between the dominant and the subdominant
eigenvalues. By its nature, the link structure of the world wide web brings
|λ2| extremely close to one, [38]. The above convex combination affects the
eigendistribution of ¯̄P in such a way that if S(P̄) = {1, λ2, . . . , λn} is the spec-
trum of P̄ , then S(¯̄P) = {1, αλ2, . . . , αλn}, cf. [37].8 Thus the asymptotic rate
of convergence boils down to how fast αt tends to 0.

Now this leads us to a well discussed “dilemma”. Decreasing α speeds up
convergence, but alters the actual transition matrix which results in moving
away from the true nature of the web. Increasing α on the other hand dra-
matically slows down convergence and besides that, sensitivity issues start to
appear, as described in Subsection 4.5.2 on page 78. Brin and Page report to
use an α around 0.85, [13], which commonly agreed to be a good choice.

Precision

Due to the stochastic nature of πT , all the documents’ PageRanks need to be
tightly packed into a section of the [0, 1] interval. For n > 8 · 109 an accuracy
of at least 10−9 is needed, resulting in a minimum of about 127 iterations with
α = 0.85. However, as comparisons at query time will only be made between a
small subset of elements of πT , less accuracy than that is required. Brin and
Page report success using only between 50 to 100 iterations.

In our example from Figure 3.2 on page 47, with α = 0.9 one would need
at least 23 iterations to reach a precision9 of 10−5, resulting in

πT =
(

0.03721 0.05396 0.04151 0.37508 0.20600 0.28624
)

and thus a ranking with decreasing PageRank importance of 4, 6, 5, 2, 3, 1.

3.4.4 Implementation

To close this section on PageRank we would like to present a simple imple-
mentation of the basic algorithm, which is shown in Listing 3.2 on the facing
page.

It can easily be seen that if we use the ¯̄P from Equation (3.11) in the power
method iteration we can rewrite Equation (3.7) on page 47 as

πT
(t) = πT

(t−1)
¯̄P

= απT
(t−1)P̄ + (1− α)πT

(t−1)

1n×n

n

= απT
(t−1)P̄ + (1− α)

1n

n
(3.13)

which is the actual iteration equation at the heart of our implementation. This
way we can split off some work that, effectively, only needs to be carried out
once instead of at every iteration step.

8 In fact, Haveliwala et al. prove in [30] that under given circumstances the second largest
eigenvalue of ¯̄

P actually equals α.
9 Precision τ here being the maximum change allowed for any component of πT

(t)
between

iteration steps t and t − 1, i. e. τ = maxi |π(t)i
− π(t−1)i

|

3.4. PAGERANK 51

As for the implementation of HITS, we start by defining an initial error,
set the precision to three decimal places more than is minimally necessary and
initiate πT

(0) = 1
T
n/n, Lines 3–7.

Next, P is created by converting A to the double format (as P also needs
to hold real numbers) and transforming it according to Subsection 3.4.2 on
page 48: we calculate the sum of each row, replace zero entries in the resulting
vector by ones (to prevent divisions by zero) and then use a diagonal matrix
formed from it to divide each row of P by its row sum (or just 1 in case of a
zero row), Line 17. The dangling nodes are then taken care of by replacing the
corresponding rows by 1/n–entries, giving us P̄ in Line 18.

Finally we perform the power method in Lines 22–26 until sufficient pre-
cision is obtained, keeping as any operations outside of the while–loop as
possible.

1 function [p] = fastpr(A , alpha)

2

3 err = 42; % set initial error to some value

4 eps = 10^(−floor(log10(N)+1)−3); % set error tolerance

5

6 one_over_ns = ones(1,N) / N; % n element vector with 1/n−entries
7 p = one_over_ns; % initial PR distribution

8

9 % 1. manipulate matrix: adj −> raw google matrix

10 rowsums = sum(A,2); % calc all the row−sums
11 zrows = find(rowsums==0); % get indices of all the zero−rows
12

13 % replaces zeros by ones to prevent division by zero in next step

14 rowsums(zrows) = ones(length(zrows),1);

15

16 % devide each row of A by its rowsum (or by 1)

17 P = spdiags(1./rowsums,0,N,N)*double(A);

18 P(zrows,:) = ones(length(zrows),N)/N; % fix dangling nodes

19

20 % 2. perform the power method

21 P = alpha*P; z = (1−alpha)*one_over_ns; i = 1;

22 while err > eps

23 i = i+1; p_old = p; % increase counter, store old p

24 p = p_old*P + z; % update p

25 err = max(abs(p−p_old)); % error

26 end

Listing 3.2: An implementation of the PageRank algorithm.

A completely different approach to quantifying importance is taken by the
following more topologically motivated measures.

52 CHAPTER 3. RANKING SCHEMES

3.5 Centrality measures

In the following section, we take a different approach to ranking, an approach
that is not an eigenvector based iterative method like the two we have just
finished discussing.

We will introduce three different notions of centrality used to identify (at
least geometrically) important nodes: excentricity, status and centroid value.
These classical measures have been around for many years and extensively
studied as they are especially useful in resource allocation problems and trans-
portation networks.

Using notions of centrality to rank nodes in a network is immediate: the
more central a node, the more important it must be. Central nodes are the
crossroads of a network and may give an intuitive idea of the flows of infor-
mation. Moreover, in the spirit of graph evolution models, these nodes usually
reflect some historical importance, as the network must have grown “around”
them.

These considerations suggest the use of centrality measures for ranking, and
their usage in biological networks has been recently proposed in [63]. Each of
the following three measures will first be motivated by some intuitive example
of their use, then defined properly and finally implemented.

3.5.1 Excentricity

Motivation and Definition

Suppose you are an urban planner and it is your task to place a fire station. Of
course, you want to place it in such a way that the worst case response time is
minimal. In a simple traffic network setting, where nodes correspond to places
and edges to the roads connecting them (under the assumption the locations are
separated by unit distances), this typical facility allocation problem searches
the nodes with minimal maximum distance to all others.

The maximum distance from one node to all other nodes is called excentri-

city:

Definition 3.1 (Excentricity)
In a connected graph G = (V, E), the excentricity of a vertex v ∈ V,

denoted e(v), is defined as the maximum over all the distances to the other
nodes, i. e. e(v) = maxu∈V lvu.

The radius of the graph, denoted ρ(G), is defined as the minimal excentri-
city of its nodes, i. e. ρ(G) = minv∈V e(v).

The center of the graph, denoted C(G), is the set of vertices with excentri-
city equal to the graph’s radius, i. e. C(G) =

{

v ∈ V
∣

∣e(v) = ρ(G)
}

.

Note that the maximal excentricity over all vertices in a (connected) graph
is the graph’s diameter, d(G) = maxv∈V e(v).

We will now see one use of our somewhat different definition of the dis-
tance matrix.10 As we don’t always have the “luxury” of a connected graph,

10 That is that the distance between mutually not reachable nodes is set to n (the total
number of nodes), see Subsection 1.3.3 on page 7

3.5. CENTRALITY MEASURES 53

our specialized distance matrix allows for a meaningful extension of the above
definition to disconnected graphs. It is clear that the smaller the excentricity
of a node, the more central it is. However, a node that is “isolated” in some way
(that is at least one other node cannot be reached from it), will be penalized
by the large value n and fall “out of competition” for centrality.

In our example of the “fire station placement problem”, its the center set of
the traffic network graph that contains all the nodes that solve the problem.
It is interesting to note that this set is always contained in a single subgraph,
which is a star (that is a connected graph without articulation points11), [29].

Calculation

The calculation of the excentricities of nodes follows directly from its defi-
nition and is straightforward once we have got the distance matrix D of the
network. The vector e containing the excentricity of each node would then be
e = max(D,[],2).

3.5.2 Status

Motivation and Definition

Imagine you are to decide on where to place a new shopping mall. It will be
best for business if most people could reach it as easily as possible, i. e. you
demand minimum average driving time to it.

A classical resource allocation concept to help you out in this case is called
status:

Definition 3.2 (Status)
In a connected graph G = (V, E), the status of a vertex v ∈ V, denoted

s(v), is defined as the sum over the distances to all the other nodes in the graph,
i. e. s(v) =

∑

u∈V luv

The status of the graph, denoted s(G), is defined as the minimal status
of its nodes, i. e. σ(G) = minv∈V s(v).

The median of the graph, denoted M(G), is the set of vertices with status
equal to the graph’s status, i. e. M(G) =

{

v ∈ V
∣

∣s(v) = σ(G)
}

.

The definition of status was introduced by Frank Harary in a sociometrical
context, [28], however the concepts of center and median of a graph were already
considered by Camille Jordan in 1869, [33]. In the above example, the “shopping
mall placement problem” would be solved by all the nodes in the median set.

Note that instead of the status, one may prefer to consider the average
distance between one node and all the other nodes. In case of connected graphs,
this is equivalent to the status, as the average distance would simply be the
status divided by e− 1.

As for excentricity, our modified version of the distance matrix allows for a
sensible extension of the above definition to disconnected graphs.

11 An articulation point (also called cut vertex) of a graph G is a vertex whose removal
disconnects G . Node 1 in Figure 3.3(a) on page 56 is such an articulation point.

54 CHAPTER 3. RANKING SCHEMES

Calculation

Again, calculation is trivial once we have the distance matrix D of the graph.
The vector containing all the stati of the nodes would be s = sum(D,2).

3.5.3 Centroid value

Motivation and Definition

Keeping ourselves busy with placing shops, we are, in a different situation,
aware of a competitor who also wants to place a shop. Under the assumption
that customers always buy at the nearest shop, where should we place our
shop, knowing that the competitor will place his shop at some later stage?

The following considerations give us an answer to that question. Let’s
model the problem with a graph where the vertices are the customers and the
edges correspond to the road network, each edge representing a unit distance.
The customers always buy at the closest store and in case of equal distances
shopping is equally likely at either store.

For vertices u and v let Vuv =
{

w ∈ V
∣

∣lwu < lwv

}

be the set of all the other
vertices that are closer to u than to v. Letting z̃(u, v) = |Vuv| − |Vvu|, it is
clear the we should place our shop in at the location u that maximizes z̃(u, v)
over all possible locations v for our competitor, who will then naturally choose
a node v that minimizes z̃(u, v), so s(v) −→ minv 6=u s(v).

Entringer et al. prove in [18] that s(u) + |Vuv| = s(v) + |Vvu| for all con-
nected graphs. With this identity we can write z̃(u, v) = −s(u) + s(v), an the
solution to the shop placement problem would be to look for vertices u for
which z̃(u, v) = −s(u) + minv 6=u s(v) is maximal.

This motivates the definition of the centroid value:

Definition 3.3 (Centroid value)
In a connected graph G = (V, E), the centroid value of a vertex v ∈ V,

denoted z(v), is defined as z(v) = s(v)−minu6=vs(u).

The centroid value of the graph, denoted χ(G), is defined as the minimal
centroid value of its nodes, i. e. ζ(G) = minv∈V z(v).

The centroid of the graph, denoted C(G), is the set of vertices with centroid
value equal to the graph’s centroid value, i. e. C(G) =

{

v ∈ V
∣

∣c(v) = ζ(G)
}

.

Note that this definition is different from the one Peter J. Slater gave in
[57], namely in that the sign of z̃(u, v) has been inverted. The reason for that
is purely aesthetic and was suggested in [63]: in analogy to excentricity and
status we would like this third centrality measure to be minimal at the most
central nodes. In fact, contrary to the other measures, the centroid value of a
node might very well become zero, or even negative.

If in a connected graph G = (V, E) we find a node v̄ with centroid value
z(v̄) = 0, it implies that s(v̄) = minu6=v̄ s(u) = σ(G). Hence, by definition,
v̄ ∈ M(G) and there exists at least one other node with the same minimal
status, i. e. |M(G)| ≥ 2.

However we can find z(v̂) < 0 only for at most one node v̂. In this case,
s(v̂) is the unique minimum of all the stati, and M(G) = C(G) =

{

v̂
}

.

3.6. DAMAGE 55

Calculation

Due to the fact that for each node we need to determine the minimum of the
status over all other nodes we cannot calculate the vector containing all the
centroid values with a single command; we have to use a for–loop. First we
calculate all the stati and store them in s. Then, in the loop, we remove at
each step the current node from s and finally search for the minimum, see
Listing 3.3 below.

1 function z = centroid(D)

2

3 z = zeros(n,1); % initialize

4 s = sum(D,2); % calculate all the stati

5 for i = 1:n

6 tempstat = s; % temporarily store s

7 tempstat(i) = []; % remove current

8 z(i) = s(i) − min(tempstat);

9 end

Listing 3.3: Function returning the centroid values of all the nodes in a graph.

Yet another, radically different approach to measuring importance is taken by
our last ranking scheme, namely the one induced by “damage”.

3.6 Damage

We would like to close this chapter by introducing a seventh measure: dam-

age. This measure has been introduced in [39] for bipartite graphs, and more
recently for undirected graphs in [56].

3.6.1 Motivation and Definition

In biological networks for example, another idea of the importance of a node
(enzyme) would be the effect its removal would have. One missing enzyme
could prevent the production of a number of proteins and thus have a critical
effect on the entire organism.

The damage value of a node has been introduced to quantify the effect of
the deletion of that particular node. Similar to [56] we define the damage value
of a node as follows:

Definition 3.4 (Damage)
In a graph G = (V, E), let Gv = (Vv, Ev) be the connected component that

contains node v, so v ∈ Vv, and let G̃v = (Ṽv, Ẽv) be the largest connected
component of Gv after the removal of node v, so v /∈ Ṽv.

Then the value

ð(v) = |Vv| − |Ṽv|

is the damage value (or just damage) of node v.

56 CHAPTER 3. RANKING SCHEMES

So the greater the damage, the greater the difference in sizes of the cluster
node v was in before its removal and the largest “piece” that is left of it.

1

2

3

4

5

(a)

=⇒

2

3

4

5

(b)

Figure 3.3: Illustration of the amount of damage the removal of node 1 can
cause.

If in contrast a node v has damage ð(v) = 0, it means that the node was
isolated in the first place, so its removal has no effect at all. If ð(v) = 1,
the damage caused by its removal is limited to the disappearance of the node
itself, leaving the rest of the network intact (either the node was a “dead end”
by itself, or, if it connected two other nodes, an alternate route is present).

To illustrate the definition of damage, take a look at Figure 3.3. In (a), the
size of the connected component that contains node 1 is 5. After the removal
of the cut vertex 1, the remaining largest piece has size 2 as we can see in (b),
so ð(1) = 5−2 = 3. However, the damage of node 5 for instance would be only
ð(5) = 1, as its removal does not disconnect the graph (or, more precisely, the
connected component it is in).

3.6.2 Calculation

The calculation of damage of a node is unfortunately an extremely costly task,
as for each node we have to determine twice the largest connected component
of a (sub)graph in order to determine its size.

The function damage works hand in hand with the function splitintocc,
which we shall describe first.

Function splitintocc

As its name suggests, the function splits a graph into its connected components.
More precisely, the function returns two cell arrays which contain respectively
an adjacency matrix for and a vector containing the names of the nodes in each
connected component.

The adjacency matrices however are a bit special, in that they are not
obtained by “chopping off” (removing) all the nodes that are not part of a
particular connected component (and hence changing the size of the matrix,
and the “names” of the nodes), but just by setting the corresponding rows and
columns to zero. That way, the adjacency matrices keep their original sizes,

3.6. DAMAGE 57

1 function [ccsA , ccsN] = splitintocc(A)

2

3 % calculate matrix Asum2. nonzero entries correspond to mutually

4 % reachable nodes (see function avl for more details).

5 n = length(A); nn = n^2; m = 0; ∆nnz = 42;

6 Asum2 = logical(speye(n)); Am = Asum2;

7 warning('off','MATLAB:conversionToLogical'); % we know that issue.

8

9 while (nnz(Asum2) 6= nn) && (∆nnz 6= 0) && (m ≤ n)

10 m = m + 1; Am = logical(double(Am)*A); % new power of A

11 Asum1 = Asum2; Asum2 = Asum1 | Am; % add it to Asum2

12 ∆nnz = nnz(Asum2)−nnz(Asum1); % increase of new paths

13 end

14

15 ncc = 0; ccsA = {}; ccsN = {}; oneton = 1:n; rmved = [];

16

17 % now go through the connected components

18 while ¬isempty(Asum2)
19 ncc = ncc + 1;

20

21 % grab all the nodes that are reachable from first node ...

22 thiscc = find(Asum2(1,:));

23

24 % take care of node name changes resulting from the removals ...

25 origind = oneton; origind(rmved) = []; % "simluate" removal

26 thiscc_origind = origind(thiscc);

27 removeme_origind=oneton; removeme_origind(thiscc_origind)=[];

28

29 % now create the different adjacency matrices of the different ccs

30 ccsA{ncc} = A; % take A ...

31 ccsA{ncc}(removeme_origind,:) = false; % set non−cc−members to 0

32 ccsA{ncc}(:,removeme_origind) = false; % ...

33 ccsN{ncc} = thiscc_origind; % and store their names

34

35 % finally get them out of the way

36 Asum2(thiscc,:) = []; Asum2(:,thiscc) = [];

37 rmved = [rmved,thiscc_origind];

38 end

Listing 3.4: Function returning the connected components (and the respective
nodes in these) of a graph.

the nodes keep their “names” and only the nodes that are part of the current
connected component keep edges attached to them.12

Much of the functionality is similar to our avl function, see Subsection 1.4.2
on page 12. Basically, we create a matrix Asum2 which contains a nonzero
element (i, j) if node i can be reached from node j, which is then used to
determine the connected components.

However, special care needs to be taken in the process: as (in order to save
work) we remove nodes along the way, we must keep track of the original names
of the nodes.

12 This has a practical reason, because now slcc(ccsA{x}) will automatically report the
correct size of the connected component of the nodes in cssN{x}

58 CHAPTER 3. RANKING SCHEMES

So we first “simulate” the removal of the nodes (Lines 25–27) and that
way obtain the original names the “surviving” nodes had before the others got
removed.

With these precautions we can detect a connected component, Line 22,
restore the original “names” of its members, Line 27, and finally create the
special adjacency matrix for it in its appropriate cell of ccsA, Lines 30–33.
This done, the component gets removed from the network and the process
restarts.

Function damage

Now that we have a means of getting the connected components for each node,
calculating the damage values of the nodes is quite straightforward, following
immediately from its definition.

The algorithms basically has two modes. Either you want to know the dam-
age values of some (specified) nodes — in this case you have to pass the function
a connected graph or the type of adjacency matrix produced by splitintocc

— or you want to know the damage values of all the nodes in the graph (in
which case splitintocc is run automatically).

Note t5hat slcc is an alias function that runs avl to determine the size of
the largest connected component.

1 function [d] = damage(A , nodes)

2

3 if nargin == 1 % no particular nodes specified

4 nodes = [];

5 end

6

7 d = [];

8

9 if isempty(nodes) % we must do all the work.

10 [G,nodes] = splitintocc(A);

11 for j = 1:length(G)

12 d(nodes{j}) = damage(G{j},nodes{j});

13 end

14 else

15 n = length(find(sum(A,2))); % slcc(A)

16

17 for i = 1:length(nodes)

18 A_temp = A; % make temporary copy of A

19 A_temp(nodes(i),:) = []; % delete row

20 A_temp(:,nodes(i)) = []; % delete col

21 d(i) = n − slcc(A_temp); % calc damage

22 end

23 end

Listing 3.5: Function returning the damage of some or all nodes in a graph.
Note that the function splitintocc is shown in Listing 3.4 on the
previous page.

With this last measure of importance we would like to close this chapter on
ranking schemes and shall continue by investigating their robustness with re-
spect to changes in the graphs they are applied to.

C H A P T E R 4

Robustness

We devise 4 types of network perturbations and 6

different ways of measuring deviations in rankings,

then present quantitative results as well as some

theoretical results on the ranking’s robustness.

4.1 Introduction

Now that we have discussed different measures suitable for ranking nodes in
a network, we should investigate the robustness of the resulting rankings in
particular with respect to variations in the network.

The data gathered in real life is often based on some physical measure-
ments. This implies that the data might be inaccurate, incomplete or incorrect
to some degree, reasons for that possibly being insufficient precision in the
physical measurements, the influence of noise, or deliberate sampling (given
that measuring 100% of the system may require unjustifiabilly more time or
money).

In any case, it is important to know how sensitive the rankings are to
various types of perturbation. A ranking scheme that inverts the order of
the nodes when only a few edges are changed will be of little practical use.
To analyse the impact of perturbations, we introduce a number of ways to
measure the deviations between two rankings. We then perturb the network
by incrementally removing, adding or rewiring edges, or removing nodes — as
these are phenomena close to real life problems — and compare the deviation
between the rankings of the original and the perturbed networks.

For the simulations we used randomly generated Barabási–Albert graphs
as their degree distribution resembles those of protein–protein interaction net-
works that we are going to look at in the last chapter. Our extensive quan-
titative results are also accompanied by a few theoretical results concerning
PageRank and HITS.

4.2 Perturbations

As mentioned above, having data which is 100% correct is a rather “utopian”
case. Being able to identify important nodes by some ranking is one thing,
having a ranking that is also robust to missing or slightly wrong data is another.

Note that perturbing edges has in two ways a rather limited effect, compared
to changing nodes. On the one hand, changing one edge only affects two nodes

59

60 CHAPTER 4. ROBUSTNESS

(but may disconnect the graph) and there are usually much more edges than
nodes. On the other hand, removing a node also implies the removal of all
edges joining it, so the impact will usually be much greater.

We shall now describe various types of possible perturbations.

4.2.1 Edge perturbations

Edge removal

One of the most intuitive perturbations is surely edge removal. By that, we
mean the random deletion of a number of edges.

This would correspond to the case for example, where measurements missed
out on some interactions between proteins.

Edge addition

The dual case to edge removal would be edge addition in random positions,
similar to the procedure used to generate Erdös–Rényi graphs.

Such a perturbation could be introduced for example by measurement noise
or wrong interpretation of certain results.

Edge rewiring

In the case of edge rewiring, the number of edges stays constant (this time
similar to the generating algorithm of the Watts–Strogatz model).

This type of perturbation can also be induced by noise or misinterpretations
of lab results.

4.2.2 Node perturbations

Node removal

Another intuitive perturbation would be (random) node removal, i. e. we ran-
domly choose a number of nodes and remove them (as well as all the edges
joining it).

This would correspond to missing out on some (maybe intermediate) reac-
tant or additional “ingredient” in some reaction due to either inaccurate mea-
surements or deliberate sampling of data.

Node attack

By node attack we mean the systematic and targeted removal of the most
important nodes. This is a rather artificial alteration, as it implies some inten-
tional act (and the a priori knowledge of the importance of all the nodes). We
therefore only mention it here, but will not examine it further in this present
work.

4.3. MEASURES OF DEVIATION 61

Node addition

Node addition would be the random addition of nodes, which must also be
accompanied by the addition of a number of edges connecting those new nodes
to the network. As in the biological networks we shall consider later the number
of nodes (proteins) is usually well known (through, for example, sequencing the
genome), it is very unlikely that some perturbation would actually add nodes to
the network. This is the main reason why we shall also leave this perturbation
out of the following investigations.

4.3 Measures of deviation

We shall now present six different approaches to measuring the deviations be-
tween the ranking of an original and a perturbed network. We will call these
“Method 1 – 6”. At the beginning of each we try to give a short and condensed
question to motivating it.

All methods have in common that they look at the top 5% (plus ties) of
the nodes in the rankings. We do this mainly for two reasons:

(i) In practice, one is only interested in a few top ranked nodes, not the entire
ranking (just like a person searching some information on the internet
only checks the first few results a search engine has come up with, so it
is most important to know the sensitivity of these results).

(ii) In case of node removal, the total number of nodes and hence “contribu-
tions” to the deviation measure decreases. For a meaningful comparison,
however, we need a constant number. So, for instance, if we only use a
small (constant) number of top ranked nodes (say a number correspond-
ing to 5% of the origininal network size), we can then remove up to 95%
of the nodes and still be comparing the same number of deviations.

The first three measures focus on the actual ranks of the nodes. The result-
ing deviation measure is calculated by taking the L1–norm of the respective
deviations in ranking of the nodes, i. e. we sum up the absolute values of the
differences in places. Conversely, the last three measures are based purely on
the fact whether a node is in the top 5% of the rankings or not.

4.3.1 Using the ranking of the nodes

The following three methods use the ranks1 of nodes to measure the deviation.

Method 1

“How strong an impact has the perturbation on the identification
of highly ranked nodes in the ‘real’ network?”

To answer that question, we compare the ranks of a number of initially top
ranked nodes (i. e. in the ranking of the unperturbed network) with where they
“ended up” after the perturbation.

1 Please note the way we set up our ranking, which is described at the beginning of Sub-
section 4.3.4 on page 65.

62 CHAPTER 4. ROBUSTNESS

Table 4.1(a) on the current page illustrates this process. Here we have a
network with 10 nodes and look at the top 50% of the nodes. The measure of
deviation δ1 would be calculated as follows:

δ1 = |1− 6|
︸ ︷︷ ︸

Node 3

+ |1− 2|
︸ ︷︷ ︸

Node 8

+ |3− 9|
︸ ︷︷ ︸

Node 4

+ |4− 4|
︸ ︷︷ ︸

Node 10

+ |4− 1|
︸ ︷︷ ︸

Node 1

= 15

Original Perturbed

Rank Node Rank Node

1. 3 1

1. 8 8

3. 4 ·
4. 10 10

4. 1 ·
6. · 3

7. · ·
8. · ·
9. · 4

10. · ·
(a) Method 1.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Original Perturbed

Rank Node Rank Node

1. 7 9

2. · 7

2. 4 1

4. 1 4

5. 9 2

6. · ·
7. · ·
7. · ·
7. · ·
10. 2 ·

(b) Method 2.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

Original Perturbed

Rank Node Rank Node

1. 6 5

2. 2 ·
3. 10 ·
4. · 3

5. · ·
5. · 6

7. · ·
8. · 2

9. 3 10

10. 5 ·
(c) Method 3.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

(d) Methods 4, 5 and 6.

L

IO

IP

IO ∩ L

IO ∩ IP

Table 4.1: Illustrations for the five methods used to calculate deviations. The
dots are placeholders for values that are not used / unimportant.

4.3. MEASURES OF DEVIATION 63

Method 2

“How important really are nodes of high rank in the perturbed
network?”

This question can be answered by looking at the positions of a number
of top ranked nodes from the perturbed graph and compare these with their
original (“real”) ranks.

In Table 4.1(b) on the facing page we illustrate these comparisons for a
fraction of 50% of the top ranked nodes in the perturbed network. The resulting
method of deviation δ2 is then calculated with:

δ2 = |1− 5|
︸ ︷︷ ︸

Node 9

+ |2− 1|
︸ ︷︷ ︸

Node 7

+ |3− 4|
︸ ︷︷ ︸

Node 1

+ |4− 2|
︸ ︷︷ ︸

Node 4

+ |5− 10|
︸ ︷︷ ︸

Node 2

= 13

Method 3

“How big are the maximum deviations between the rankings?”

To quantify this, we first determine all the deviations and then sum up a
fraction of the biggest deviations.

Looking at a fraction of 50% of the deviations, the dashed gray arrows in
Table 4.1(c) on the preceding page correspond to those that are not taken into
account as they are smaller then the deviations marked by the solid arrows.
We determine δ3 in this case with:

δ3 = |1− 6|
︸ ︷︷ ︸

Node 6

+ |2− 8|
︸ ︷︷ ︸

Node 2

+ |3− 9|
︸ ︷︷ ︸

Node 10

+ |9− 4|
︸ ︷︷ ︸

Node 3

+ |10− 1|
︸ ︷︷ ︸

Node 5

= 31

4.3.2 Using the number of correctly identified nodes

Method 4

“What’s the chance that a seemingly important node is, in fact,
not important?”

To answer this question, we first define two sets: IO is made up of the top
5% plus ties of the (original) ranking and IP of the top 5% plus ties of the
ranking of the perturbed network.2

Then we look at the cardinalities of the sets and their intersection. The
nodes that are identified as important and that really are important would be
found in the set IO ∩ IP . If we compare the number of nodes in this set with
the total number of “important” nodes in the perturbed network (IP), we get
an idea of the quality of the ranking.

To set up a deviation measure, now let

δ4 = 1− |IO ∩ IP |
|IP |

2 See Table 4.1(d) on the facing page for an illustration of the sets. The numbers 5%
and 5% here are chosen arbitrarily to some extent, and they do not necessarly have to be
identical.

64 CHAPTER 4. ROBUSTNESS

This measure can then be interpreted as the probability that a seemingly im-
portant node in the perturbed network is, in fact, not really important.

Of course, this measure strongly depends on the chosen “limits” for impor-
tance. In the following, we will stick to the suggested top 5% from both the
original and the perturbed ranking.

To give a little example, say we take the ranking from Table 4.1(a) on
page 62. Considering 40% and 20% of the top ranked nodes as “important”,
we would have IO =

{

3, 8, 4, 10, 1
}

(note that even though 40% correspond to
4 nodes, we also took node 1 in as place 4. is a tie) and IP =

{

1, 8
}

. Hence
IO∩IP =

{

1, 8
}

and finally δ4 = 1−2/2 = 0 indicating a flawless performance
of the “ranking scheme” behind the two presented rankings.

Method 5

“What’s the probability that an important node does not get iden-
tified as such?”

In other words, we now would like to have an idea of how many of the nodes
that really are important do not stay in a certain top fraction of the ranking
after perturbation.

An attempt to answer this question is quite similar to our previous measure.
We define the sets IO and IP in the same way as above (i. e. for example top
5% plus ties) and then let

δ5 = 1− |IO ∩ IP |
|IO|

So the only difference is that we divide by the number of elements in IO instead
of in IP .

4.3.3 Method 6

“What’s the chance that the importance of top ranked nodes gets
totally misjudged?”

An example for such a misjudgment would be if originally important nodes
end up at the bottom of the ranking of the perturbed graph. So an approach
to the question above would be to define an other set, IL, which contains the,
say, bottom 25% of the nodes in the ranking of the perturbed graph. We can
then introduce

δ6 =
|IO ∩ IL|
|IO|

That way, δ6 corresponds to the probability that an originally important node
ends up in the bottom quartile of the network.

4.4. QUANTITATIVE ASSESSMENT 65

4.3.4 Possible problems

Ties in the ranking

With the exception of PageRank and HITS, it is very likely in the other ranking
schemes that a (sometimes considerable) number of nodes gets exactly the same
“score”. For example, one just has to look at the node degrees, where (in the
scale–free networks we are going to use) a multitude of nodes will have degree 3.

Because of this we will use a ranking that respects ties: The rank of a node
corresponds to 1 + the number of nodes that perform strictly better than the
node itself. Such a ranking (base on node degrees in this example here) could
look like this:

Rank 1. 1. 3. 4. 5. 5. 7. . . .
Node 4 43 1 38 51 14 7 . . .

Degree 5 5 4 3 2 2 1 . . .

When nodes disappear

Some precautions need to be taken in case of node removing perturbations:
When we remove nodes, the adjacency matrix not only changes in size, but the
nodes do not correspond to their initial row– and column indices anymore.

To overcome this, we need to keep track of which nodes have been removed
and then remove the corresponding entries from the vector the ranking algo-
rithm produces.

In practice, this is done the following way. When we want to compare for
example the PageRank values between two matrices — where the first matrix
corresponds to the original network, and the second one to the perturbed net-
work (with dimensions n2 = n1−length(rmved) due to the removal of nodes
rmved) — we first calculate the PageRanks for both matrices. Before compar-
ing both of them however, we remove the values corresponding to nodes rmved
from the (longer) PageRank vector p1 of the first matrix: p1(rmved) = [].
That done, we can easily calculate the deviations by some suitable sorting of
p1 and p2.

We shall now move on to the actual quantitative evaluation of the robustness
of the rankings schemes presented in the previous chapter, using the deviation
measures we have just finished describing.

4.4 Quantitative assessment

Having reviewed the deviation measures and some potential problems, we
would now like to evaluate experimentally the robustness of the ranking al-
gorithms.

4.4.1 Preliminary remarks

Before presenting our results we should mention a few important points.

66 CHAPTER 4. ROBUSTNESS

Our setup

Due to the number of combinations that result from the different deviation mea-
sures (6), different perturbations (4), different ranking schemes (7), different
graph models (3) and different network parameter combinations (countless),
we cannot present all of our results.

The first step in reducing this overwhelming number of possible combina-
tions is that we limit ourselves to only looking at a one type of graph and the
(fixed) sets of generating parameters: In all of the following, we used scale–free
graphs on n = 3000 nodes and roughly e ≃ 9000 edges — generated with the
Barabási–Albert model using n0 = m = 3.

We chose this model not only for reasons of simplicity and the fact that it is
well studied, but mostly because many networks encountered in biology show
scale–free characteristics (see Subsection 2.5.2). The actual parameter choice
is of course arbitrary to some extent, but produces graphs similar in size to the
real world graphs we will be looking at in the next chapter.

For each deviation method we will then show the impact of the differ-
ent perturbations by comparing the sensitivity of each of the seven ranking
schemes. Any of the following values and plots represent the average from 250
independent runs of the respective simulation.

The results are plotted using the following markers:

× Node degrees
� HITS
� PageRank

△ Excentricity
♦ Status
• Centroid value

For the PageRank rankings we used the standard α = 0.85.

Disconnection

The scale–free graphs we are generating are always connected (this is guaran-
teed by the Barabási–Albert model we will use). However, when we start to
remove or rewire edges, sooner or later the graph will get disconnected.3

As the disconnection of the graph will significantly influence the centrality
based ranking algorithms it is important to study the point at which the graphs
usually become disconnected. We did so by generating 250 scale–free graphs
and perturbed them in a similar increasing way (in the exact same way as used
for the comparisons below). We then took note after how much perturbation
the graph became disconnected.

Figure 4.1 on the next page shows the distributions from these simulations.
There, we can see in (a) that the amount of perturbation required for discon-
necting the graphs can be as little as 100 or as high as 1600 removed edges.
From the 250 graphs generated, the calculated mean was around 785 removed
edges (with standard deviation of ≈ 266) needed to disconnect the graph.

A similar result holds for edge rewiring, see (b). Disconnection can occur
in a broad interval ranging from 100 to 1900 rewired edges which contains the
calculated mean value of ≈ 900 (with standard deviation ≈ 345).

3 This is immediate to see for edge removals; in the rewiring case we could argue that the
graph is turning more and more into an Erdös–Rényi graph. For these graphs, 9000 edges for
3000 nodes are far from enough to “guarantee” connectedness, see Theorem 2.1 on page 22.

4.4. QUANTITATIVE ASSESSMENT 67
N

um
b
er

of
in

st
an

ce
s

G
G
G
G
G
G
A

Number of removed edges GGGGGGA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

(a) Edge removal
N

um
b
er

of
in

st
an

ce
s

G
G
G
G
G
G
A

Number of rewired edges GGGGGGA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

(b) Edge rewiring

Figure 4.1: Distribution of disconnected graphs for increasing perturbations.
A total of 250 graphs were independently generated to average.

We have not included a plot for node removal, as removing up to 100 nodes
never disconnected a single graph (in over 500 trials).

Status and centroid value

In all plots and tables we will see that status and centroid value produces
seemingly exactly the same results. This indicates that the rankings induced
by both rankings must be very close, if not identical.

This does not come as a surprise, as it can be easily explained by looking
at their definitions again: they only differ by the “−minu6=vs(u)” term which is
constant (but for at most one single node). Thus, both rankings will be quite
if not totally the same.

Excentricity and damage

We shall see below that excentricity often behaves strangely with respect to
perturbations. This is surely due to the fact that excentricity gave very clus-
tered ranking on our networks. The scores where usually concentrated on three
or four values at the most, so the rankings are basically three or four different
places that are shared by a large number of nodes.

A representative example would be for instance where out of the 3000 nodes
15 would have excentricity 4 (putting them in place 1), 1463 nodes with excen-
tricity 5 would be in place 16 and 1521 nodes had excentricity 6 and ended up
in place 1479.

Similar, but even worse, is the situation for damage. It is not only signifi-
cantly more costly to simulate, but also not helpful as a method — at least for
the type of graphs we are studying. These are connected by design and their
connectedness is also quite robust to single node removals removing (which is
done in order to calculate the damage, see Section 3.6 on page 55).

To illustrate these two points we plotted the average distribution of scores
in Figure 4.2 on the next page. This graphic shows the average scores of the
3000 nodes returned by the different ranking schemes, normalized and sorted in

68 CHAPTER 4. ROBUSTNESS

increasing order. We can see that for most of the nodes, the excentricity curve
is absolutely flat, meaning that many nodes get the same score. The situation
is even more dramatic for the damage scores, see Figure B.2 on page 101, where
each and every node has the same score.

Node number GGGGGGA

Sc
or

e
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Average distribution of the scores of the different ranking schemes
on 200 Barabási–Albert graphs with n = 3000 nodes and n0 = m = 3 .

With these considerations in mind we still kept excentricity and damage in
our simulations4, solely for reasons of completeness. We shall present and
analyse the results from these simulations.

4.4.2 Results

Method 1

General remarks Figure 4.3 on the facing page shows the relevant plots
for this first measure. Note that we cannot present results for node removal
perturbations as some of the originally most highly ranked nodes might get
removed with increasing perturbation. In that case we cannot perform the
necessary comparisons.

4 The results for damage, however, have only been calculated for smaller graphs of 150
nodes; these results are shown in the Appendix B on page 99

4.4. QUANTITATIVE ASSESSMENT 69

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4 ×103

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ×104

(c) Edge rewiring

Figure 4.3: Sensitivity for deviation measure 1.

Besides some (explainable) nonlinear behavior for excentricity the other
curves seem quite linear. But in the case of edge addition, PageRank and node
degrees clearly perform best compared to the other measures.

Edge removal One of the most remarkable things in Figure 4.3(a) is probably
the shape of the curve for the excentricity (△). The error seems to increase
first but then decreases again after about 600 links have been removed. This
behavior however does not reflect the real sensitivity of the rankings, as it can
be explained in the following way.

In the early stages, as edges get removed, the perturbation increases and
initially top ranked nodes might “climb down” the ranking. Obviously, the more
edges get removed, the more likely it is that the graph becomes disconnected.
As mentioned in Subsection 4.4.1 on page 66 the majority of the graphs usually
became disconnected after about 600 removed nodes.

Now, what happens the moment time the graph becomes disconnect? One
thing is, that the distance matrix gets its first set of “penalty entries” with the
high value n = 3000. As a matter of fact, from that moment on, each row and
each column in the distance matrix must have at least one penalty entry. As
mentioned above, the excentricity of a node corresponds to the maximum entry

70 CHAPTER 4. ROBUSTNESS

in the distance matrix along its corresponding row. Hence suddenly all nodes
get the same excentricity, get ranked (shared) first place and the deviation falls
down to a low, constant value.

The shape of the curve is then produced by the superimposition of the
100 series of deviation values that are used to average out the results. Each
graph in it becomes disconnected at a different point, similar to the shape of
Figure 4.1(a) on page 67.

Edge addition We can see in Figure 4.3(b) that the excentricity performs
much worse than all the other ranking schemes, which are all roughly equally
as good.

However, the absolute deviations are much smaller (by more than one order
of magnitude) compared to the other perturbations. This might be due to the
fact that the graph cannot become disconnected here.

Edge rewiring When it comes to rewiring, we can see in Figure 4.3(c) that
PageRank and node degrees seem to be the best choice as their rankings seem
to be much more stable than the other ones. The order of magnitude of the
deviations is surprisingly almost precisely the same as for edge removal.

Also, the same shape for the excentricity curve is manifest. The graphs
are becoming disconnected, as they gradually turn into Erdös–Rényi random
graphs with 3000 nodes and 9000 edges, which will typically not be connected
(in average). We thus have the same disconnection issue as for edge removal
and a similar explanation for the shape of the curve applies.

Method 2

General remarks The relevant plots for this first measure are shown in Fig-
ure 4.4 on the next page. There, we can see that most values, again, increase
quite linearly, with the exception of excentricity.

Also, PageRank and node degrees do the best job for each type of pertur-
bation, most clearly in case of edge removal and rewiring. If we look closely,
the node degree induced ranking seems to be even better than PageRank.

Edge removal For very few disturbances, Figure 4.4(a) shows that all ranking
methods seem to perform more or less equally well. From about 200 removed
edges on, however, PageRank and node degrees clearly separate from the others.
HITS looks equally sensitive as centroid value and status.

Excentricity, again, is showing a bit of an odd behavior. The “bowing
off” to the side is surely not an indication that, at some stage, excentricity
induced rankings are more robust to the perturbations than HITS, status and
centroid value, but rather the result of the disconnection problem which sends
all the nodes to (shared) first place and hence results in a constant deviation,
as discussed above.

Edge addition At very early stages, all six measures show roughly the same
performance, see Figure 4.4(b). Soon, however, differences appear and PageR-
ank and node degrees take the lead.

4.4. QUANTITATIVE ASSESSMENT 71

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6 ×103

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4 ×103

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ×104

(c) Edge rewiring

Number of removed nodes GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2 ×103

(d) Node removal

Figure 4.4: Sensitivity for deviation measure 2.

Edge rewiring HITS, being the most sensitive ranking method here, as well
as status and centroid value are clearly outperformed by PageRank and node
degrees, as we can see in Figure 4.4(c).

The apparent good performance of excentricity should not be given too
much weight in light of its poor resolution, and also that it is effectively useless
once the graph becomes disconnected.

Node removal The interesting thing in Figure 4.4(d) is that excentricity does
quite a competitive job. In fact, on this plot there is no clear winner (even
though PageRank and node degrees perform slightly better than the other
measures).

Method 3

General remarks The four plots for this measure are shown in Figure 4.5 on
the following page. Out of all the plots, this one shows probably the strangest
behaviors.

In plots (a) and (b) the curves for node degree induced ranking show some
oscillatory behaviour. To properly explain this further investigations should be
carried out.

72 CHAPTER 4. ROBUSTNESS

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3 ×105

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5 ×105

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3 ×105

(c) Edge rewiring

Number of removed nodes GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ×105

(d) Node removal

Figure 4.5: Sensitivity for deviation measure 3.

In contrast to the previous two figures, most of the curves on these plots
are rather nonlinear. Excentricity also shows some strange behavior in case
of edge removal and rewiring. The deviation seems to rise quickly in the first
step, decrease slightly and then continue to grow slowly.

HITS appears to be joining the pair of related measures centroid value and
status, as their deviations are virtually identical here.

The order of magnitude of the deviations is, as one would expect it, much
higher than in the previous cases, as we are picking the maximum deviations
to calculate the measure.

Edge removal In early stages of Figure 4.5(a), it is HITS, centroid value and
status that perform best. However, from about 400 removed edges on, they are
outperformed by PageRank, and a bit later also by the node degree induced
ranking.

The sensitivity of node degree induced ranking shows the mentioned oscil-
latory behaviour.

Edge addition As seen before, HITS, centroid value and status seem to be
doing quite a robust job when it comes to adding edges. We can see in

4.4. QUANTITATIVE ASSESSMENT 73

Figure 4.5(b) that independent of the amount of perturbation, they clearly
beat PageRank, excentricity and node degrees (which show an oscillatory be-
haviour).

Edge rewiring In Figure 4.5(c) we get roughly the same picture as for edge
removal, however, the drop after the first peaking for excentricity is less pro-
nounced.

PageRank, again, performs well, but the node degree induced ranking seems
to overtake it at roughly 1000 rewired edges.

Node removal The plots for node removal, shown in Figure 4.5(d), indicate
that here again HITS, centroid value and status preform best, followed by
PageRank. Excentricity is out of competition as it seems to be much more
sensitive than the other measures.

Method 4

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(c) Edge rewiring

Number of removed nodes GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Node removal

Figure 4.6: Sensitivity for deviation measure 4.

General remarks We shall now move on to a radically different measuring
scheme. Figure 4.6 shows some of the results from our simulations for deviation
measure 4.

74 CHAPTER 4. ROBUSTNESS

The most homogeneous picture is obtained for edge addition, where all the
measures except excentricity are more or less equally good.

HITS again sticks quite closely to centroid value and status, PageRank and
node degrees perform well with roughly the same amount of deviation for each
of the different edge perturbations.

It is interesting to note that PageRank (and in a way also node degrees, if
we neglect the oscillations) show quantitatively the same amount of sensitivity
for all three types of edge perturbations.

Edge removal Until up to 400 removed edges, excentricity and node degree
seem to be better than the other ranking methods, as we can see in Fig-
ure 4.6(a). But beyond that point the node degree deviation shows some
oscillations again. PageRank then seems to give the most consistent results.

Edge addition There is not much to note in Figure 4.6(b) other than that
excentricity preforms poorly again, the other five measures seeming much more
robust. They perform roughly equally well, HITS being the best, on close
inspection.

Edge rewiring Similar to edge removal, three groups are apparent in Fig-
ure 4.6(c). That is, PageRank and node degrees perform best, followed by
HITS, centroid value and status, and the rather sensitive excentricity.

Node removal In the case of node removal, Figure 4.6(d), after a fast increase
in deviation the curves level out to a more slow increase. The excentricity
induced ranking seems to slowly decrease in sensitivity again after the initial
“boost”, which should not be taken too serious in light of our earlier remarks.

Method 5

General remarks With minor differences, the in shapes of the subplots for
edge removal and rewiring in Figure 4.7 on the facing page closely resemble
each other as well as to the corresponding ones from measure 1 (Figure 4.3
(a) and (b) on page 69). Here, the shapes of the excentricity curves are very
similar to the distribution of disconnected graphs, Figure 4.1 on page 67, which
can be explained easily.

Besides the strong oscillations in the sensitivity of the node degree ranking
in case of edge addition, both PageRank and node degree perform best in three
out of the four cases.

Edge removal The picture is quite clear in Figure 4.7(a), PageRank and node
degrees being the methods of choice.

Edge addition Again, we find some oscillatory behaviour in the curve for
node degrees in Figure 4.7(b). The ranking induced by the nodes’ excentricities
seems to be completely robust; next in line would be HITS followed closely by
centroid value and status.

4.4. QUANTITATIVE ASSESSMENT 75

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c) Edge rewiring

Number of removed nodes GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Node removal

Figure 4.7: Sensitivity for deviation measure 5.

Edge rewiring The same comments as for edge removal can be made for
Figure 4.7(c).

Node removal Clearly, Figure 4.7(d) is very similar to Figure 4.6(d), so we
find also for measure 5 that node degrees and PageRank allow for the least
sensitive ranking in case of node removal.

Method 6

General remarks It is not hard to see that excentricity does a very bad job
in all four cases of Figure 4.8 on the next page. The other measures perform
much better, if not ideally well: They appear to be completely robust with
respect to edge additions for instance as deviations there are actually zero.

PageRank seems one more time to be the overall winner, followed by node
degrees.

Edge removal Besides the strong deviation for excentricity in Figure 4.8(a)
(which can be explained by the disconnection issue again), HITS, centroid value

76 CHAPTER 4. ROBUSTNESS

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Edge rewiring

Number of removed nodes GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Node removal

Figure 4.8: Sensitivity for deviation measure 6.

and status form the usual group, but PageRank and node degrees perform
better than these, PageRank being near perfect.

Edge addition Perhaps surprisingly, Figure 4.8(b) indicates perfect robust-
ness of all the measures other than excentricity.

Edge rewiring Node degrees and PageRank are flawless here as well, as their
deviations are constantly zero in Figure 4.8(c). The HITS, centroid value and
status trio however shows a slightly increasing deviation.

Node removal Interestingly enough, all measures show sort of a “jump” to
a certain deviation value where they then stay more or less constant, Fig-
ure 4.8(d). PageRank is again the seemingly most robust measure.

4.4.3 Conclusions

Once again, we would like to point out the additional plots in Appendix B on
page 99. Generally speaking, we can say that in most of the cases PageRank
and node degrees seem to be the most robust ranking methods. There are

4.5. THEORETICAL RESULTS 77

however cases, where HITS as well as centroid value and status challenge this
position, this happening most frequently at edge adding and node removing
perturbations.

With the sensitivity varying from measure to measure it is hard to give a
general recommendation, even without taking into account the actual useful-
ness of the produced rankings themselves. In other words: the best scheme
strongly depends on the question asked.

Before closing this chapter, let us quickly mention two theoretical results on
sensitivity.

4.5 Theoretical results

As a complement to the extensive quantitative assessment of sensitivity we
would now like to present two theoretical results, one on HITS and one on
PageRank, which have been published in a paper by Ng et al., [51].

4.5.1 Sensitivity of HITS

They claim (and prove) that the stability of the HITS algorithm is governed by
the so–called eigengap of the authority matrix, that is the difference between
the largest and the second largest eigenvalue of ATA.

This is done through the following theorem, which is unfortunately only
limited to very small perturbations, that is addition or removal of a number of
edges to/from exactly one node.

Theorem 4.1 (Sensitivity of the HITS algorithm)
Let A be the adjacency matrix of a graph G = (V, E), and M = ATA

be its associated authority matrix with principal eigenvector ν1 and eigengap
η = λ1 − λ2. Assume the maximum out–degree of every node of G is bounded
by kmax.

For any ε > 0, suppose we perturb G by adding or deleting at most k links
from one node, where

k <
(

√

kmax + α−
√

kmax

)2

, where α =
εη

4 +
√

2ε

Then

‖ν1 − ν̃1‖2 ≤ ε

holds for the perturbed principal eigenvector λ̃1 of the perturbed matrix M̃ .

Proof: [51]. �

As we know from Subsection 3.3.2 on page 42, the principal eigenvector
contains the hub scores of the network, so as little a change as possible in it
is desired. However, knowing a bound on the amount of change in this vector

78 CHAPTER 4. ROBUSTNESS

does not imply a bound on the deviation of the ranking the scores induce. It
is therefore hard to draw further conclusions from this result.

The same limitation is also valid for their result on PageRank, which we
describe now.

4.5.2 Sensitivity of PageRank

Stated in the same paper, the following theorem by Ng et al. is significantly
less restrictive than the one for HITS:

Theorem 4.2 (Sensitivity of the PageRank algorithm)
Let P̄ be the transition matrix of a graph G = (V, E) and πT be the principal

left hand eigenvector of ¯̄P = αP̄ + (1− α)1n×n/n. Let nodes v1, v2, . . . , vm be

changed in any way and let ˜̄P be the resulting (new) transition matrix.

Then the new PageRank scores π̃T satisfy

‖π̃T − πT ‖1 ≤
2
∑m

i=1 πvi

1− α

where πvi
denotes the PageRank score of node vi.

Proof: [51]. �

So, the impact of the perturbation depends on the nodes that are perturbed,
and on the “damping factor” α chosen.

It is quite intuitive that the more important the perturbed nodes were in
the first place, the bigger the deviation will be resulting from the perturbation.
Just think of the internet surfer illustration from above — the more important
a page is, the more frequent it will be visited, hence the greater the overall
impact of any change to it.

This is another aspect of the dilemma related to α (see Subsection 3.4.3 on
page 49). Here as well, one is tempted to lower it as it will certainly decrease
sensitivity to perturbations. This becomes most obvious in the radical case
of setting α = 0. Here, the PageRank algorithm would run purely on the
static 1/n matrix, completely ignoring any change in the transition matrix
that represents the graph.5

4.5.3 Limitations

Simulations not displayed here have shown that the bounds are very conser-
vative. The actual deviation was usually by at least one order of magnitude
smaller than the bound.

But most importantly, both results have a major limitation: they only give
bounds for a norm of the difference of the score vectors, not the resulting
ranking. As this is what we are interested in in our context we have little use
here for the theorems.

They are however a good start and point in the right direction, and further
investigations should be carried out on this topic.

5 This also implies that the bound is not tight.

4.5. THEORETICAL RESULTS 79

We also noticed that both bounds are very crude. For example the effective
deviations resulting from all meaningful perturbations we could inflict on var-
ious types of graphs were roughly ten times smaller than the bound given in
Theorem 4.2 on the preceding page, indicating that the bound could certainly
be improved with further investigation.

Now that we have an idea of the ranking schemes’ robustness with respect
to differnet perturbations we shall investigate the actual correlation between
attributed importance through high ranking and importance in the context of
an application, such as protein–protein interaction networks.

C H A P T E R 5

Application to real data

After analysing three real world networks we

evaluate the ranking schemes’ ability on them to

identify essential nodes, as well as the robustness of

this ability with respect to wrong data.

5.1 Introduction

In the previous chapters we have examined a number of ranking schemes and
studied their properties on computer generated networks. However, we have
not yet looked at how well these schemes actually identify “important” nodes
in real world networks.

Of course, the precise interpretation of “important” depends on the appli-
cation considered. For that reason, we look in this chapter at the possible ap-
plication of ranking algorithms to biological networks, namely protein–protein
interaction networks.

Even in small and simple organism there are easily thousands of proteins
active in a single cell. Proteins can be enzymes directly involved in chemical
reactions of the metabolism, or can be part of larger modules like ribosomes or
mitochondria. Other types of proteins are involved in regulation and control
of gene expression, or serve as messengers that signal between cells.

For many applications it is crucial to understand the interactions between
the proteins in living cells. One approach biologists have taken is to establish
so called protein–protein interaction networks which allow an effective analysis
of the system of interactions. In these networks, proteins form the nodes, and
they are linked together if they interact in some way or other, resulting in an
undirected graph.

With more and more datasets becoming available we shall evaluate the
performance of our ranking schemes in identifying essential nodes.1 We use
three recent datasets, namely those from Uetz et al. [59], Yu et al. [64] and Ito
et al. [32].2 These datasets provide us with the actual networks and also with
a list of proteins known to be essential.

After examining the networks we will evaluate the fraction of essential nodes
among a certain top fraction of nodes in the different rankings, as well as the
robustness of the identification process with respect to perturbations in the
networks.

1 A protein is considered essential if its removal causes the organism to die.
2 Although the data itself has been taken from the accompanying website of the article

by Uetz et al. [64]: http://bioinfo.mbb.yale.edu/network/essen/ .

81

82 CHAPTER 5. APPLICATION TO REAL DATA

5.2 Examination of the data

The networks we consider here are not connected but rather contain one major
connected component and a few, much smaller “satellites”. Hence establishing
the graphs diameter or calculating its average path length will not give very
meaningful values. Also, using measures like excentricity will not provide good
rankings.

For these reasons, we will focus our investigations only on the

largest connected component within these networks. More precisely,
we shall now have a look at the degree distributions and characteristic values,
comparing them with Barabási–Albert graphs of comparable size. This is done
dataset by dataset.

5.2.1 Uetz dataset

The dataset by Uetz et al., [59], is the smallest of those examined here. It

Figure 5.1: Largest connected component from the Uetz dataset. Essential
nodes are marked in red.

originally contains 1044 proteins and 981 interactions. Its largest connected
component however includes only about 54% of those nodes, that is n = 558

5.2. EXAMINATION OF THE DATA 83

proteins.3 With e = 646 edges it is rather sparsely connected (only 0.42% of
the potential reactions take place).

Figure 5.1 on the facing page shows a visual representation of the largest
connected component in the Uetz dataset. As we will be interested in essential
nodes in Section 5.3, we marked the nodes known to be essential in red.

Degree distribution

As suggested in Subsection 2.5.2 on page 36, protein–protein interaction net-
works usually have some sort of power law degree distribution. However, we
should mention that this is by no means established in a theoretical way. Best
results were obtained by fitting a slightly modified p(k) = a · (k + k0)

−γ on the
actual distribution.4

Figure 5.2(a) shows the degree distribution for the largest connected com-
ponent together with two fitted power laws. The red (dashed) line corresponds
to p(k) ∼ (k +7.1)−3.6, calculated using the nonlinear fitting function in Mat-

lab. The fit of the standard power law Equation (2.7) on page 28 returned
γ = 1.7.

Node Degree GGGGGGGGGGA

F
r
a
c
t
io

n
o
f
n
o
d
e
s

in
%

GG
G
G
G
G
G
G
G
GA

1 10

0 5 10 15 20

0.1

1

10

100

0

10

20

30

40

50

60

(a)

Value Ito BA1 BA2

〈k〉 2.315 1.996 3.989
〈l〉 7.285 6.364 3.808
d 18.000 15.720 7.000
〈c〉 0.052 0.000 0.042

(b)

Figure 5.2: (a) Degree distribution of the largest connected component in the
Uetz dataset. The dashed lines show the fitted power laws.
(b) Characteristic values of the dataset compared to the average values
for 200 comparable Barabási–Albert graphs on n = 558 , with parameters
n0 = m = 1 (“BA1”) and n0 = m = 2 (“BA2”).

Characteristic values

In Figure 5.2(b) above there is a table of the characteristic values for the
largest connected component of the Uetz dataset together with those for two
comparable Barabási–Albert random random graphs (that is the average value
from 200 instances of each).

3 The second largest connected component contains only 24 nodes.
4 The benefits of this modified approach are much more obvious for the Ito and Yu

datasets, see for example Figure 5.4(a) on page 85.

84 CHAPTER 5. APPLICATION TO REAL DATA

The Barabási–Albert model used had n = 558 and n0 = m = 1 (column
“BA1”). This gave the fixed power law exponent γ = 3 and e = 557 edges
(compared to 646 edges in the dataset). Using n0 = m = 2 (column “BA2”) we
obtain graphs with about twice as many edges, e = 1113.

It is the lack of edges in the “BA1” case that explains the smaller average
node degree compared to the dataset. The missing clustering is due to the
specific generating algorithm (which cannot produce any “triangles” starting
with only one node and adding 1 edge with each new node). It is interesting
to see, however, that average path length and diameter are smaller — even if
there are less edges in total. This means, that the pure Barabási–Albert model
creates more efficiently connected graphs.

The much denser “BA2” setup also fails to properly reflect the properties
of the dataset as it is significantly denser. Even so, clustering is lower than in
the original data, indicating that the biological network is quite clustered.

5.2.2 Ito dataset

We now take a look at the next larger dataset, namely the one by Ito et al.,
[32].

Figure 5.3: Largest connected component from the Ito dataset. Essential
nodes are marked in red.

5.2. EXAMINATION OF THE DATA 85

It contains a total of 3278 nodes and 4393 edges. Again, the correspond-
ing graph is disconnected and contains one dominating cluster. This largest
connected component contains about 87% of the proteins, that is n = 2840.5

A total of e = 4147 edges within that component make it the sparsest of the
three networks, as only 0.10% of the possible edges are present.

Even so, the visual representation of the network, Figure 5.3 on the preced-
ing page, looks rather dense. Essential nodes are, again, coloured red.

Degree distribution

We show in Figure 5.4(a) below the degree distribution for the largest connected
component of the Ito dataset as well as fitted power laws. The best fit was
obtained using the modified power law (red dashed line), resulting in p(k) ∼
(k + 5.1)−4.7. The pure power law resulted in an exponent of γ = 1.4 (blue
dash–dotted line).

Node Degree GGGGGGGGGGA

F
r
a
c
t
io

n
o
f
n
o
d
e
s

in
%

GG
G
G
G
G
G
G
G
GA

1 10 100

0 50 100 150 200 250

0.1

1

10

100

0

5

10

15

20

25

30

35

40

45

50

(a)

Value Ito BA1 BA2

〈k〉 2.920 1.999 3.997
〈l〉 4.886 7.972 4.514
d 14.000 20.630 8.010
〈c〉 0.038 0.000 0.012

(b)

Figure 5.4: (a) Degree distribution of the largest connected component in the
Ito dataset. The dashed lines show the fitted power laws.
(b) Characteristic values of the dataset compared to the average values
for 200 comparable Barabási–Albert graphs on n = 2840 , with parame-
ters n0 = m = 1 (“BA1”) and n0 = m = 2 (“BA2”).

Characteristic values

The table in Figure 5.4(b) above shows the results from the analysis of the real
data as well as two attempts to imitate its properties with a scale–free graph.

As the number of edges of the real graph (more precisely of the largest con-
nected component) falls exactly between the number of edges possible with the
standard Barabási–Albert model, we present, again, two different parameter
combinations (that is n0 = m = 1 and n0 = m = 2), resulting respectively in
graphs with e = 2839 (column “BA1”) and e = 5677 (columns “BA2”).

We observe similar behavior as for the Uetz dataset: for the sparser graphs
(“BA1”), the average node degree is, of course, lower and clustering is zero. The

5 All other connected component have equal or less than 6 nodes.

86 CHAPTER 5. APPLICATION TO REAL DATA

average values of average path length and diameter are however significantly
smaller compared to the real network.

The denser graphs “BA2” have also smaller diameters and average path
lengths, but even though it is much denser, clustering is about three times
lower than in the real network.

5.2.3 Yu dataset

The largest of our datasets is the one by Yu et al., [64].

Figure 5.5: Largest connected component from the Yu dataset. Essential
nodes are marked in red.

It contains records for a total of 4743 proteins and 22980 interactions. Note
that this figure includes 629 self–loops. We decided to drop these self–loops, as
to better fit the graph in our previously established framework (we would also
encounter problems when applying the PageRank algorithm, or when rewiring
edges, as we will do in the following two sections).

The largest connected component contains about 96% of the nodes, more
precisely n = 4544.6 After removing all self–loops, the cluster has e = 22588
edges, resulting in a density of about 0.22%.

6 The second largest connected component contains only 4 nodes.

5.2. EXAMINATION OF THE DATA 87

Figure 5.5 on the facing page depicts the largest connected component of
the Yu dataset.

Degree distribution

The degree distribution for this dataset together with the fitted power laws
are shown in Figure 5.6(a) below. Again, the modified power law allows for
a better fit (red dashed line), and we find p(k) ∼ (k + 5.7)−3.3. The “blunt”
power law fits best with γ = 1.1 (blue dash–dotted line).

Node Degree GGGGGGGGGGA

F
r
a
c
t
io

n
o
f
n
o
d
e
s

in
%

GG
G
G
G
G
G
G
G
GA

1 10 100

0 50 100 150 200 250

0.01

0.1

1

10

100

0

5

10

15

20

25

(a)

Value Ito BA

〈k〉 10.065 9.993
〈l〉 4.358 3.429
d 11.000 5.050
〈c〉 0.305 0.014

(b)

Figure 5.6: (a) Degree distribution of the largest connected component in the
Yu dataset. The dashed lines show the fitted power laws.
(b) Characteristic values of the dataset compared to the average values
for 200 comparable Barabási–Albert graphs on n = 4544 (n0 = m = 5).

Note that the two little “outliers” around k = 58 and k = 81 may be due to
measurement error; this also underlines that the power law is only an model
to approximate reality.

Characteristic values

In this situations we find that setting n0 = m = 5 actually produces a graph
very similar not only in size but also in density (with a target n = 4544 the
Barabási–Albert model produces e = 22705, which is only 200 edges more than
the real network has).

The characteristic values calculated for the largest connected component
in the dataset along with those from similar scale–free graphs are shown in
Figure 5.6(b) above.

As expected, the average node degrees are close together. We find again,
however, that on the one hand the artificial networks seem to be more efficient
in connecting nodes (the average path length is smaller, and the diameter is
only half of that of the real network) but on the other are significantly less
clustered, that is 20 times less.

88 CHAPTER 5. APPLICATION TO REAL DATA

5.2.4 Conclusions

All three models had in common that their degree distribution deviates quite
clearly from a pure power law distribution, but a slight modification can im-
prove the fit.

The networks based on the real data all show a significantly higher clus-
tering than the ones created by the Barabási–Albert model. These, however,
feature shorter average path lengths and a smaller diameter.

With the three datasets introduced we shall now continue by investigating the
performance of our ranking schemes in identifying biologically essential nodes.

5.3 Identifying essentiality

In the third chapter we presented a number of ranking schemes and motivated
their use. Chapter 4 then investigated their robustness with respect to wrong
or missing data using artificial networks of the Barabási–Albert type. We now
examine the biological relevance of the different notions of importance. In
particular, we consider question of the type “If a node is PageRank–important,
is it also essential for the survival of the organism?”

We will try give an answer to this type of question by examining the overlap
or intersection of nodes identified as important by our ranking schemes and
nodes known to be essential (from a biological point of view). This is done,
again, dataset by dataset.

5.3.1 Our setup

In the following we shall not take into account the actual rank of the nodes, as
we have only the “binary” information whether a protein is essential or not. In
fact, we proceed similar to deviation measure 4 from the previous chapter.

Calculation of quality

Recall Table 4.1(d) on page 62, with the sets IO and IP , and think of them,
now, as being respectively the set of “known–to–be–essential”–nodes and the
set of “thought–to–be–important”–nodes given by the ranking scheme.7

The set of essential nodes I0 is given along with the datasets; IP is obtained
by taking a certain percentile of the most highly ranked nodes. The issue of
ties is dealt with in the following way.

In looking at the intersection of both sets we get the number of correctly
identified nodes. We then normalize that number by the total number of nodes
in IP as to get the fraction of essential nodes among the “thought–to–be–
important” nodes — and also to tackle the effect of including the ties. So the
higher the value |IO ∩ IP |/|IP |, the better the ranking scheme performs.

The general benchmark for the different ranking schemes is the global frac-
tion of essential nodes in each network. This threshold lies around 20% of
the nodes in each graph, so if one randomly picks, say, 5% of the nodes, then
roughly every fifth node should be essential.

7 Dropping the notion of perturbation for the moment.

5.3. IDENTIFYING ESSENTIALITY 89

It is clear that any ranking scheme with a “success” ratio below this thresh-
old is rather useless, as (statistically) one would be better off to just randomly
pick nodes instead of going through the trouble of applying that scheme.

Presentation of the results

We will present the results from this section in Table 5.1 below. Each entry
corresponds to the percentage of essential nodes among respectively the top
1%, 5%, 10% or 25% of nodes from the different rankings.

The best performance(s) in each column are marked in a bold font. Ratios
falling below the threshold of random picks are canceled. The question marks
in the row corresponding to the ranking by damage value mean that the value
has not been calculated due to the numerical effort needed in order to determine
it.

In addition to our usual set of ranking schemes we also combined some of
them to see if their “synergy” gives improved performance. These combinations
are called Ia, Id and Ic and correspond to combinations of all8, the degree–
related9 and the centrality–related10 rankings. By combination we mean the
intersection of the sets of nodes identified as important by each one of them.
So to say they represent the “general agreement” of the member schemes.

As an example, the 50.0 entry in the Ia row, Uetz dataset, 5% column,
means that if we take a fixed top fraction of nodes from all rankings such that
their intersection contains about 28 nodes (that is 5% of the 558 nodes in the
largest connected component of the dataset), then every second node in that
set is, in fact, essential.

With these remarks made, let’s take a look at Table 5.1.

Uetz dataset Ito dataset Yu datasetRank.
sch. 1% 5% 10% 25% 1% 5% 10% 25% 1% 5% 10% 25%

ND 83.3 48.4 34.4 31.5 28.1 23.8 21.6 19.9 54.3 42.3 48.1 41.6

HITS 50.0 35.7 28.6 27.2 17.1 16.6 15.4 16.5 22.7 43.8 48.6 35.9
PR 83.3 46.4 39.3 32.6 28.1 24.8 21.6 19.1 58.0 62.1 54.0 39.8
Exc. 39.1 24.6 24.6 24.8 18.4 18.4 18.4 18.4 34.7 34.7 34.7 23.5
Stat. 33.3 17.2 26.8 26.8 31.3 19.7 18.0 16.9 56.0 59.5 52.0 33.6
CV 33.3 17.2 26.8 26.8 31.3 19.7 18.0 16.9 56.0 59.5 52.0 33.6

Dam. 66.7 44.0 33.9 30.6 ? ? ? ? ? ? ? ?
Ia 65.7 50.0 41.1 30.3 28.1 19.3 17.4 18.3 80.4 68.4 51.8 39.7
Id 83.3 48.3 37.5 29.7 30.0 19.0 17.3 17.9 79.2 72.2 54.2 40.6
Ic 50.0 17.2 28.6 26.8 31.3 19.7 17.4 17.9 55.3 60.3 46.2 33.6

Table 5.1: Comparison of the ranking schemes abilities to identify differ-
ent quantities of essential nodes in the different datasets. The success
rates for random picks are 22.6%, 17.9% and 21.0% for the respective
datasets.

8 Including damage, when available
9 Node degrees, PageRank and HITS

10 Excentricity, status and centroid value

90 CHAPTER 5. APPLICATION TO REAL DATA

5.3.2 Uetz dataset

The results for this dataset look quite convincing (with the exception of the
drop in performance of the status and centroid value induced rankings at 5%)
and in a way intuitive: Generally, all ranking schemes decrease in performance
as we ask for more and more important nodes. This makes sense, because the
more nodes we demand, the more likely it will be that ranking scheme and
reality “disagree”; whereas if we only want a handful of the most important
nodes, the vast majority of them should (hopefully) be essential.

In this dataset, the global fraction of essential nodes is 22.6%. When we
ask only for a few nodes, node degrees and PageRank share the first place,
together with Id (their combination with HITS). Demanding for larger numbers
of important nodes, it is the combination of all rankings schemes Ia that has the
highest success rate, about one in two are correctly identified. If we consider
an even larger fraction, a quarter of the nodes, about one third of the nodes
identified by PageRank are essential.

In any case, status, centroid value and excentricity perform worst, whereas
in contrast the combination of all of the schemes gives consistently good results.
In a way surprising, damage also performs quite well, at least better than any
of the centrality based ranking schemes.

5.3.3 Ito dataset

The situation is quite different in this dataset, as excentricity, status and cen-
troid value perform better relative to PageRank and node degrees than in the
previous case. However, the latter two again allow for the highest success rates
when we ask for more than 140 proteins (5% of the network size).

The benchmark of 17.9% in case of random picks is however crossed a
number of times — and, surprisingly, HITS lies entirely below it. In case of
desired 10 and 25% of nodes, status and centroid value are not doing well
(contrary to their good performance for the very top ranked 1% of nodes).

Probably due to their low fraction of essential nodes, all the combination
methods fail as well to deliver better results than just randomly picking nodes.

Excentricity performs also quite bad, and the constant values due to the
fact, again, that the ranking induced by the excentricities of the nodes is ex-
tremely clustered.

5.3.4 Yu dataset

The first thing we would like to point out is that we can confirm the result
from the paper by Yu et al. [64]. They defined 1061 nodes (around 22% of
the total network size) of the most highly connected nodes as hubs, and found
that about 43% of them are essential. In taking about 25% of the nodes with
the highest degrees this fraction is has decreased slightly to about 41.6%. This
is in agreement with their prediction in the supplementary material to their
paper [65].

Containing 953 essential nodes, about 21% of randomly picked nodes (from
the largest connected component) should be essential. It is positive to see that,
unlike the Ito dataset, this threshold is not crossed here.

5.4. ROBUSTNESS OF THE IDENTIFICATION OF ESSENTIALITY 91

Most notable is, however, that again the combination of all ranking schemes
or just the degree based schemes provide best results in this dataset. However,
status and centroid value also allow for more than a third of correctly identified
nodes.

Strangely again, HITS gives a very bad result when we look at the very top
ranked nodes, but then increases to come close to a 50% success rate.

5.3.5 Comparison between the datasets

In general, all ranking schemes work best on the Uetz dataset, correctly iden-
tifying at least one fifth of nodes (except for the one case of centroid value and
status). We also find the highest ratio, that is 83.3% of essential nodes among
the top scoring nodes with respect to node degrees and PageRank.

Good results are also obtained for the large dataset by Yu et al.. With two
small exceptions, at least a third of the nodes are correctly identified, and in
the majority of cases even more than 50%.

Maybe due to the quality of the data and lacking robustness in the ranking
schemes, they perform not as well on the Ito dataset. Here, at most a third of
the identified nodes are essential. Some rankings schemes even drop below the
threshold where one would be better off to just randomly pick nodes.

Among the different schemes, it is again the centrality based ones that per-
form worst. Damage however seems to work quite well, at least on the Uetz
dataset. Further investigations might show whether this will also be the case
for other dataset. It is doubtful though that the quality of the results will be
able to justify the disproportionately higher computational effort.

Having examined the ability of the different ranking schemes to identify es-
sential nodes in the datasets, we would like to close this last chapter by testing
the robustness of this identification process.

5.4 Robustness of the identification of

essentiality

Some of the strange effects from the previous section, like the sudden but
“temporary” collapse of the values from centroid value and status at 5% in the
Uetz dataset, can surely be explained by the considerable amount of noise in
the datasets.

To further investigate the effect of perturbations on the rankings we made
another series of simulations.

5.4.1 Our setup

We introduced different amounts (5%, 10%, 15% and 20% of the number of
edges) of edge perturbations (removal, rewiring and addition) to each of the
datasets and averaged over 50 runs.

The results are presented in a similar manner as in the previous section, with
the important difference that the percentages in the table head now correspond
to the amount of perturbation introduced. As in the previous chapter for

92 CHAPTER 5. APPLICATION TO REAL DATA

deviation measures 4 and 5 we consider the top 5% of the nodes to be important,
and then determine the fraction of nodes that are know to be essential.

Again, the best values in each row are highlighted in bold font and values
that fall below the threshold of random picks are canceled. The first column
recalls the performance of the ranking scheme on the unperturbed network.

5.4.2 Uetz dataset

The results for our first dataset are shown in Table 5.2 below.

Edge removal Edge rewiring Edge additionRank.
sch.

No
pert. 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

ND 48.4 48.6 45.3 46.3 47.1 48.3 47.9 47.1 46.3 47.6 46.5 46.1 45.7
HITS 35.7 35.2 35.9 36.8 37.2 37.2 38.9 40.1 39.7 37.1 38.9 40.2 41.9
PR 46.4 44.6 44.6 44.4 45.2 45.6 46.7 46.6 47.0 45.4 45.2 45.1 46.4

Exc. 24.6 20.6 18.8 19.1 16.8 26.3 22.7 20.4 19.6 32.6 29.8 27.9 27.4
Stat. 17.2 19.1 18.9 19.1 16.8 23.2 21.7 20.4 19.4 19.7 26.1 28.3 29.7
CV 17.2 19.1 18.9 19.1 16.8 23.2 21.7 20.4 19.4 19.7 26.1 28.3 29.7

Dam. 44.0 41.4 42.1 41.4 40.6 37.0 37.0 37.2 36.2 37.6 35.7 35.0 34.5

Table 5.2: Comparison of the ranking schemes’ abilities to identify essential
nodes under three types of perturbation, Uetz dataset.

Edge removal

One thing to be noticed immediately is that the node degree induced ranking is
clearly the most successful ranking scheme here, closely followed by PageRank.
It is quite impressive to see that even with up to 20% of the edges removed
still about 47.1% of the identified proteins are essential to the survival of the
organism.

On the other hand, the rankings from the centrality based measures are
again the most sensitive ones, and their “performance” lies even below that of
random picks.

The slightly strange increase of the fraction of essential nodes in the HITS
rankings should not be mistaken as an increase of quality. We should rather
consider the absolute difference of the fractions, and with a change of at most
1.5% HITS seems to be the most robust of the schemes.

Damage to the contrary appears to be quite sensitive, dropping up to 3.4%
from 44.0% down to 40.6%. However, it still allows for higher detection rates
than HITS for instance.

Edge rewiring

Again, node degrees can hold their leading position with the exception of
PageRank which seems to deliver better results at 20% of rewired edges.

This should be reconsidered, as we witness a strange increase in quality (also
the case with HITS). The centrality based measure show a “leap” forward, the
detection rate changing up to 6% with only 5% of the edges rewired. After
that, they fall below the threshold of random picks again.

The most robust measure here is PageRank, as it only deviates by at most
0.8% from the unperturbed result.

5.4. ROBUSTNESS OF THE IDENTIFICATION OF ESSENTIALITY 93

Edge addition

Looking at the columns of edge addition we find quite similar results as for
edge rewiring.

The most sensitive measures here again are clearly the centrality based
ranking schemes, status and centroid value deviating by as much as 12.5% —
strangely enough in the “good” direction though.

In contrast to that stands PageRank, being the most robust ranking scheme
here again. Node degrees have the highest fractions of correctly identified
nodes.

5.4.3 Ito dataset

The data obtained from perturbations of this dataset are displayed in Table 5.3
below.

Edge removal Edge rewiring Edge additionRank.
sch.

No
pert. 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

ND 23.8 24.0 24.1 24.4 24.2 23.6 23.6 23.4 23.0 24.1 25.3 24.9 24.4

HITS 16.6 16.6 16.7 15.9 15.5 16.8 16.7 16.8 17.0 16.4 16.2 15.7 15.8
PR 24.8 24.6 24.1 24.4 23.9 24.5 24.2 24.2 23.8 24.3 23.8 23.5 23.4
Exc. 18.4 18.0 18.1 17.4 17.5 17.9 17.8 18.6 18.2 18.1 17.6 17.9 17.6
Stat. 19.7 19.9 17.7 17.2 17.5 19.7 20.3 20.7 20.3 18.9 18.7 18.7 18.7
CV 19.7 19.9 17.7 17.2 17.5 19.7 20.3 20.7 20.3 18.9 18.7 18.7 18.7

Table 5.3: Comparison of the ranking schemes’ abilities to identify essential
nodes under three types of perturbation, Ito dataset.

Edge removal

In this setting, node degrees and PageRank share the best results being at least
5 percentage points more successful than all the other measures.

Not only HITS, which always seems to detect less essential nodes than one
would get by just randomly picking nodes, but also the centrality based ranking
schemes give poor results.

The most robust of all schemes is node degrees, deviating by up to 0.6%
compared to the success rate on the unperturbed network.

Edge rewiring

When it comes to edge rewiring, the centrality based ranking schemes as well
as HITS appear again to be increasingly successful. Most interesting however
is the fact that they are the most robust here, only deviating by up to 0.6%.

PageRank on the other hand has clearly the highest fraction of essential
nodes, followed by node degrees.

Edge addition

Here, PageRank can only hold the first place for up to 5% added edges, as node
degrees tops it soon after.

94 CHAPTER 5. APPLICATION TO REAL DATA

Centroid value and status show an interesting behaviour: the success rate
remains on a constant level after about 5% of edges have been added, signaling
very good robustness to this type of perturbation.

As for all perturbations, HITS never makes it above the threshold of random
picks, disqualifying it in this dataset.

5.4.4 Yu dataset

See Table 5.4 below for the results from our sensitivity analysis on this dataset.

Edge removal Edge rewiring Edge additionRank.
sch.

No
pert. 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%

ND 42.3 42.7 42.8 43.0 43.2 43.1 43.0 43.2 43.3 42.3 42.3 42.3 42.4
HITS 43.8 44.6 44.5 44.6 44.6 44.6 44.5 44.6 44.5 43.8 43.8 43.8 43.8
PR 62.1 61.7 61.5 61.3 61.0 62.8 63.4 64.0 64.1 62.0 62.5 62.9 63.2

Exc. 34.7 34.3 36.3 35.7 34.2 34.0 32.9 31.6 29.2 31.8 30.2 30.1 28.0
Stat. 59.5 56.6 53.2 51.1 48.1 58.7 58.8 57.9 57.1 59.7 59.7 59.8 59.8
CV 59.5 56.6 53.2 51.1 48.1 58.7 58.8 57.9 57.1 59.7 59.7 59.8 59.8

Table 5.4: Comparison of the ranking schemes abilities to identify essential
nodes under three types of perturbation, Yu dataset.

As the behaviour of the different ranking schemes is quite similar across
all three types of perturbation we shall not split the comment as for the other
datasets. For all types of perturbations, PageRank consistently allows for the
highest fraction of essential nodes in its top ranked 5% of nodes.

Perhaps surprisingly it is followed by status and centroid value which, in
contrast to their performance on the other datasets, now give quite good results
and with (but for one exception) continuously more than 50% of correctly
identified nodes perform clearly better than even node degrees.

The third “block” form HITS and node degrees with around 44% success
rate, and excentricity is, again, the least effective ranking scheme.

When it comes to robustness however, it is HITS which is always the least
sensitive to any type of perturbation, in case of edge addition even being com-
pletely robust.

Status and centroid value however drop as much as 11.4% in performance
when we remove up to 20% of the edges.

Comparison between the datasets

Across the datasets we could see that node degrees and PageRank gave best
results, and that in a very consistent manner.

When it comes to robustness, it was HITS that most of the time was the
least sensitive to the different types of perturbation. The centrality based mea-
sures stayed behind these node degree oriented measures, both in robustness
and in the absolute quality of the results.

Damage looked quite promising in the Uetz dataset, and the investigations
should definitely be extended to the other datasets.

Having looked at the application of the ranking schemes to some real datasets
in this chapter, we now would like to move on to the final conclusion.

Conclusion

In the first chapter of this Studienarbeit we introduced basic notions from graph
theory and presented methods to quantify various properties of graphs together
with Matlab implementations of these algorithms.

This laid the theoretical basis for the analysis of three major random graph
models in the second chapter. We presented the classical Erdös–Rényi ran-
dom graph model, the small–world model by Watts and Strogatz, as well as
the scale–free model by Barabási and Albert. We explained and implemented
their generating algorithms, investigated and compared their properties, and
discussed examples of their use to simulate real world networks.

Chapter 3 then dealt with ranking schemes. Besides the intuitive use of the
degree of a node as a measure of importance we presented two eigenvector based
ranking algorithms commonly used in information retrieval systems, namely the
HITS and the PageRank algorithms. Their setup and the theory behind their
convergence properties was explained.

We also introduced three centrality measures that have been traditionally
used to solve resource allocation problems, as well as a more recent measure
of importance, damage, which has been suggested for the use in biological
networks.

For all of these measures readily deployable Matlab implementations have
been written.

If one intends to apply ranking schemes to real, measured data — which is
almost always inaccurate and noisy to some extent — it is vital to investigate
their sensitivity to variations in the network. In the fourth chapter, we set
up several measures of deviation to quantitatively assess the robustness of the
ranking schemes. We also presented a few theoretical results concerning HITS
and PageRank, but the bounds given by these theorems proved to be rather
conservative and not tight.

The simulations we presented show that while no single ranking scheme
is optimal in all situations, nonetheless some reasonably general conclusions
can be drawn. For instance, although PageRank and the simpler node degree
induced ranking proved many times to be the most robust of the seven ranking
schemes, their leading position has been also challenged a number of times by
the HITS algorithm as well as damage. On the other hand, the centrality based
algorithm, especially excentricity, seemed to be the most sensitive measures of
importance.

The choice of the ranking scheme of course depends not only on its ro-
bustness. Other factors would be the resolution of the ranking (excentricity

95

96 CONCLUSION

for instance produced highly coarse and clustered rankings), and, more impor-
tantly, the actual interpretation of the importance a ranking scheme attributes
to its most highly ranked nodes. It is surely the relation between importance
by hight ranking and importance in the context of the particular application
being considered that will favour one scheme or the other.

For that reason, the fifth chapter looked at one possible application of
the ranking schemes. We used three datasets of protein–protein interaction
networks that have recently become available to investigate the connection be-
tween ranked importance and essentiality (a node being essential if its removal
would cause the organism to die).

We found that, depending on the dataset and the top fraction of nodes
one actually considers to be important, the best results are obtained with
node degrees and PageRank, or combinations of both, allowing in one case for
more than 80% of correctly identified nodes. These interesting results certainly
motivate further and more extensive studies of those ranking schemes as well
as combinations of them.

To extend our analysis of robustness from the fourth chapter, we also intro-
duced increasing amounts of perturbation to the datasets. It was HITS that
seemed to be the most robust, in that it seemed to be identifying the same
amount of essential nodes independent of the amount of perturbation. How-
ever, node degrees and PageRank still allowed for the highest success rates.

The most surprising general finding was probably that pure node degrees
usually performed very well if not best, whereas their calculation was by far
the least costly. This suggests that node degrees may provide a reasonable
indication of protein essentiality at very low computational cost.

A number of open questions remain, and others have appeared. On the one
hand, the evaluation of robustness could be extended to other graph models
and to directed graphs. On the other, one could introduce different measures
of deviation that may be more appropriate or related to a certain application,
and one could also investigate the effect of more structured perturbations (such
as intentional attacks on the most highly connected nodes) or of combinations
of those we presented here.

Also, further theoretical research should be able to either refine the results
on the robustness of PageRank and HITS (for example by taking into account
the actual type of perturbation) or to extend it to other ranking schemes.

Due to the enormous computational effort needed to calculate the damage
of nodes, we could not apply the damage ranking to the larger datasets. It
would be interesting to evaluate its performance on these networks as well.

Finally, the techniques discussed here should also be applied to other bio-
logical datasets, or datasets from other areas.

A P P E N D I X A

Additional theorems

A.1 Connectedness and irreducibility

The following theorem states the relation between connectedness of a graph
and irreducibility of its adjacency matrix:

Theorem A.1 (Connectedness and irreducibility)
A graph G = (V, E) is strongly connected if and only if its adjacency matrix

AG is irreducible.

Proof:

⇐ Assume AG is reducible. Then it can be rearranged into the form

Π
TAΠ =

S1 S2

S1

S2

[

B C

0 D

]

(A.1)

where B ∈ R
r×r, D ∈ R

(n−r)×(n−r), C ∈ R
r×(n−r) and 0 ∈ R

(n−r)×r is the
zero matrix.

There, no node in S1 can be reached from nodes in S2, otherwise there
would be an edge (u, v) with u > r and v ≤ r. This would imply that auv 6= 0
which is in contradiction to the assumption that AG is reducible.

⇒ If G is not strongly connected then there exists at least one pair of
nodes u and v such that v cannot be reached from u.

Let S2 be the set of edges that can be reached from u. Without loss of
generality, let S2 = {r + 1, . . . , n}, with 1 ≤ r < n. Then, there cannot be an
edge (i, j) with i ∈ S2 and j /∈ S2, because j cannot be reached from u. This
implies aij = 0 for all i > r and all j ≤ r �

As mentioned in Subsection 1.3.1 on page 5, a matrix A is irreducible if
and only if there exists a positive integer m such that (id + A)m ≻ 0.

97

98 APPENDIX A. ADDITIONAL THEOREMS

A.2 Perron–Frobenius Theorem

We now state one formulation of the famous 1907 theorem of the German
mathematician Oskar Perron:

Theorem A.2 (Perron’s Theorem)
If A ∈ R

n×n and A ≻ 0 then there exists λ1 > 0 and ν1 ≻ 0 such that
the following hold:

(i) Aν1 = λ1ν1 ,

(ii) if λ 6= λ1 is any other eigenvalue of A, then |λ| < λ1 ,

(iii) λ1 is an eigenvalue of geometric and algebraic multiplicity 1.

Proof: Can be found for example in [42]. �

Due to the work of another German mathematician, Ferdinand Georg Frobe-
nius, this result was five years later extended to the following theorem:

Theorem A.3 (Frobenius’ Theorem)
If A ∈ R

n×n, A � 0 and Am ≻ 0 for some positive integer m then
conclusions (i)–(iii) of Theorem A.2 apply to A.

Proof: Again, can be found for example in [42]. �

As the two theorems go hand in hand, if we refer in the above document to
the “Perron–Frobenius Theorem”, we refer to the combination of both Perron’s
and Frobenius’ Theorems.

A P P E N D I X B

Additional plots

B.1 Sensitivity

The following plots have been moved here so as not to further clutter up the
fourth Chapter. The major difference is that here the sensitivity of the ranking
induced by the concept of damage is also included.

B.1.1 General remarks

The setup

The generating parameters for the graphs used for the following plots are basi-
cally the same as above, with the difference that size is scaled down 20 times.
So we have n = 150 nodes, but still n0 = m = 3, resulting in roughly 450 edges
(444 to be precise). The perturbations go as far as to remove, add or rewire
100 edges, or remove 20 nodes.

In Chapter 4, we removed up to 100 nodes, which would correspond to
removing up to 5 nodes in the smaller graphs. So it is clear that removing up
to 20 nodes has a much higher impact, and disconnection here does become an
issue (recall that this was not the case for the larger graphs).

Every value from the plots corresponds to the average value from 250 inde-
pendent runs. As above, the following markers have been used for the different
ranking schemes:

× Node degrees
� HITS
� PageRank

△ Excentricity
♦ Status
• Centroid value
×× Damage

Disconnection

As for the investigations in the fourth Chapter, we should first take a look at
the point where most of the graphs get disconnected.

The corresponding plots in Figure B.1 on the next page for edge removal
and rewiring roughly imitate the shape of their counterparts from Figure 4.1 on
page 67, more precisely the first “half” of those plots, i. e. up to 1000 perturbed
edges. It is important to mention that a number of graphs did not disconnect
in the process (this fraction is not shown in the plots).

For that matter, Table B.1 on the next page shows the percentage of graphs
that stayed connected even after maximum perturbation of 200 removed or
rewired edges, or 20 removed nodes (in the “DND” row). The listed mean

99

100 APPENDIX B. ADDITIONAL PLOTS

Number of removed edges GGGGGGA

N
um

b
er

of
in

st
an

ce
s

G
G
G
G
G
G
A

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
0

10

20

30

40

50

60

70

80

90

100

110

120

130
140

150

(a) Edge removal

Number of rewired edges GGGGGGA

N
um

b
er

of
in

st
an

ce
s

G
G
G
G
G
G
A

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
0

5

10

15

20

25

30

35

40

45

50

55

60

(b) Edge rewiring

Number of removed nodes GGGGGGA

N
um

b
er

of
in

st
an

ce
s

G
G
G
G
G
G
A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

18

20

22

24

26
28

30

(c) Node removal

Figure B.1: Distribution of disconnected graphs for different amounts of per-
turbations. A total of 2250 resp. 1875 graphs were used for the edge
resp. node perturbations.

values (accompanied by their respective standard deviations) are the mean
values of the number of removed/rewired edges/nodes that disconnected the
graph (ignoring the graphs that did not get disconnected).

Value
Perturbation

E. removed E. rewired N. removed

DND (%) 47.11 72.93 90.24
mean 75.79 71.33 15.66

st. dev. 19.09 22.13 3.75

Table B.1: Comparison of the disconnection characteristics of the different
perturbations. “DND” stands for “did not disconnect”, corresponding to
the fraction of graphs that did not get disconnected after the perturba-
tions of up to 200 removed or rewired edges, or 20 removed nodes.
Mean value together with standard deviation correspond to the mean
number of perturbed edges (nodes) needed to disconnect the graph.

B.1. SENSITIVITY 101

Our additional plot for node removal, Figure B.1(c), is also in accordance
with the observations from Chapter 4: until up to five removed nodes the small
graphs never disconnected. Scale this number by the factor of 20, and you find
the corresponding threshold of 100 nodes for the big graphs that we mentioned
on page 67.

The effects of the graphs becoming disconnected on the ranking schemes are
mainly, as described earlier, that excentricity as a means for ranking becomes
useless, as all nodes will get the same rank allowing for no distinction to be
made between nodes.

Distribution of scores

To get an idea of the “resolution” of the rankings, we present the distributions
of scores of the different importance measures (again averaged out and sorted
in increasing order) for 200 unperturbed graphs in Figure B.2. As mentioned

Node number GGGGGGA

Sc
or

e
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.2: Average distribution of the scores of the different ranking schemes
on 200 Barabási–Albert graphs with n = 150 nodes and n0 = m = 3 .

earlier, damage is not very useful a measure when graphs are as robustly con-
nected as is the case with ours (which again are designed to closely resemble
real world networks). Excentricity scores are also very coarse, indicated by the
broad intervals of same score.

In the current situation, PageRank, node degrees and HITS seem to be
highly correlated. Their pronounced rising allow for good accuracy in discrim-
ination of important nodes.

102 APPENDIX B. ADDITIONAL PLOTS

B.1.2 Results

Method 1

Most of the curves in Figure B.3 resemble the shape of their counterparts for
the larger graphs (Figure 4.3 on page 69), more precisely the sections of up to
1000 perturbed edges.

From about 25 removed edges onward, damage’s sensitivity seems to in-
crease linearly with a much steeper slope than that of HITS, PageRank, status
and centroid value. In case of edge addition, it does not deviate at all, as all
nodes have and keep the same score.

PageRank and node degrees are only outperformed once, that is by excen-
tricity in the case of edge addition. This must not be taken too seriously in
light of the coarseness of excentricity induced rankings.

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

(c) Edge rewiring

Figure B.3: Sensitivity for deviation measure 1.

B.1. SENSITIVITY 103

Method 2

Again, we find strong similarity between the results from the larger graphs and
the ones presented in Figure B.4.

Interestingly enough, however, the sensitivity of damage seems to decrease
again after a removal of about 70 edges. Looking at edge rewiring and node
removal, it seems to be roughly as robust as the other measures.

PageRank and node degrees show the least deviations for all four types of
perturbations, node degrees being slightly better than PageRank.

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

(c) Edge rewiring

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

(d) Node removal

Figure B.4: Sensitivity for deviation measure 2.

104 APPENDIX B. ADDITIONAL PLOTS

Method 3

Looking at Figure B.5 the only surprising thing to notice is the slight oscilla-
tions in sensitivity of node degree induced rankings, very similar to the effects
observed in Figure 4.5 on page 72.

It is interesting to see that damage seems to be very robust with respect to
maximum deviations in the rankings.

PageRank and node degree here are outperformed by HITS, status and
centroid value in the cases of edge addition and node removal, as we already
observed in Chapter 4.

Number of removed edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

(c) Edge rewiring

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

800

(d) Node removal

Figure B.5: Sensitivity for deviation measure 3.

B.1. SENSITIVITY 105

Method 4

Besides many similarities between Figure B.6 and its counterpart on page 73,
the plot for edge removal is strikingly different, especially in that the perfor-
mance of the different ranking schemes seems to be inversed: if PageRank and
node degrees have been very robust, they are now clearly outperformed by cen-
troid value, status and HITS — whereas HITS seemed to be the most sensitive
measure of importance in Figure 4.6(d) on page 73 now is the most robust.

Damage however has a flawless appearance for all four types of perturbation,
which can be explained easily. At the beginning (no perturbation) all the nodes
are important (all of them share the first place, as the graph is connected and
will stay connect no matter which node is removed), so there is no chance that
important nodes of the perturbed graph have not been important in the first
place.

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) Edge rewiring

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) Node removal

Figure B.6: Sensitivity for deviation measure 4.

106 APPENDIX B. ADDITIONAL PLOTS

Method 5

Figure B.7 brings few surprises, as it again is very close to its companion
(Figure 4.7 on page 75).

Damage, in the case of edge removal, shows a late but pronounced rise
in sensitivity, being rather robust up to about 60 removed edges. When it
comes to edge rewiring or node removal it is much more stable however and
outperforms the other measures in that regard.

Otherwise, PageRank and node degrees are reasonably robust as well, but
are beaten by HITS, centroid value and status in the case of node removal.

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(c) Edge rewiring

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) Node removal

Figure B.7: Sensitivity for deviation measure 5.

B.1. SENSITIVITY 107

Method 6

Comparison of the last plot of this series, Figure B.8, with the corresponding
plot from Chapter 4 (on page 76) also show reasonable amounts of resemblance.
Excentricity is way out of scope, so is damage. This can be easily explained
by the combination of poor ranking and the way the deviation measure is set
up (all nodes get first place, which in that case, curiously, has as consequence
that all nodes end up in the “loser set” L).

The other measures however perform very well, especially in case of edge
addition.

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Edge removal

Number of added edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Edge addition

Number of rewired edges GGGGGGA

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Edge rewiring

D
ev

ia
ti

on
G
G
G
G
G
G
A

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Node removal

Figure B.8: Sensitivity for deviation measure 6.

108 APPENDIX B. ADDITIONAL PLOTS

B.1.3 Conclusions

We have seen that the plots from this series of simulation resemble quite closely
to their bigger counterparts from the 20 times larger networks.

Here as well, PageRank and node degree induced rankings show most of the
time the least sensitivity to perturbations, being challenged however by HITS,
centroid value and status in some cases of edge addition or node removal.

The curves for excentricity should not be given too much weight, as, again,
on the one hand the induced ranking is extremely coarse and on the other the
impact of disconnection of the graph is significant.

List of Symbols

General notations

n Scalars; lowercase letters1

x Vectors; lowercase bold letters (always supposed to be column vectors,
if not transposed), or elementwise in parentheses:

(

x1 x2 . . . xn

)T

M Matrices; uppercase bold letters, or elementwise in brackets:
[

m11 m12

m21 m22

]

mij Element (i, j) of Matrix M ; lowercase letters with indices

mr
ij Element (i, j) of matrix M r (as opposed to (mij)

r)

S Sets; uppercase “calligraphic” letters

Sr r times the Cartesian product of S, i. e. S ×S × . . .×S exactly r times

|S| Cardinality of set S

G Graphs; uppercase “script” letters

P Properties, assumptions; uppercase “Fraktur” letters

≻ M ≻ 0 denotes that M is strictly positive, i. e. mij > 0 for all i, j

� M � 0 denotes that M is strictly non–negative, i. e. mij ≥ 0 for all
i, j and for at least one element mij > 0 (so M 6= 0)

〈·〉 Usually denotes an average value

· Within matrices stands for a zero entry (for better legibility)

Specific notations

1n The n–element column vector with all ones, p. 6

1n×n The n× n matrix with all ones, p. 49

AG or just A is usually the adjacency matrix of a graph, p. 4

Cn
k Binomial coefficient, Ck

n =
(

n
k

)

= n!
k!(n−k)! for n ≥ k ≥ 0

1 however, v usually denotes some vertex of a graph

109

110 LIST OF SYMBOLS

c Usually the clustering coefficient of a node, p. 14

z(v) Centroid value of vertex v, p. 54

〈c〉 (Average) clustering coefficient of a graph, p. 14

δ∗ Measure of deviation in rankings (∗ = 1, 2, 3, 4, 5 or 6), p. 62

∆ The Distance matrix of a graph, p. 7

d Usually the diameter of a graph, p. 12

ð(v) Damage of vertex v, p. 55

ei i–th unit vector in R
n (dimensions from context)

E Edge set of a graph, p. 1

e The total number of edges of a graph, or sometimes just some particular
edge

e(v) Excentricity of vertex v, p. 52

γ The Euler–Mascheroni constant, γ ≈ 0.577 215 664 902 is the limit of
the sequence γ = limn→∞

(
∑n

k=1
1
k − lnn

)

, p. 20

idn Identity matrix in R
n×n (dimensions from context)

k Usually the degree of a node, p. 3

〈k〉 Average node degree of a graph, p. 9

lij Distance (i. e. length of the shortest path) between nodes i and j, p. 3

L The Laplacian matrix of a graph, p. 6

λ Usually an eigenvalue of a matrix

〈l〉 Average path length of a graph, p. 10

ν Usually an eigenvector of a matrix

n Usually the total number of nodes of a graph

o(·) The Landau symbol: f(m) = o
(

g(m)
)

implies






f(m)
g(m)






→ 0 as m→∞

πT The vector with the PageRank scores of a graph, p. 47

P̄ The transition matrix of a graph, p. 48

Π n A permutation of idn (dimensions from context): Π n =
(

es1
. . . esn

)

,
where (s1, . . . , sn) is a permutation of (1, . . . , n)

p Usually some probability

s(·) Status of vertex or a graph, p. 53

V Vertex set of a graph, p. 1

Bibliography

We tried to provide as many publicly accessible web links as possible.1

[1] William Aiello, Fan R. K. Chung, and Linyuan Lu. A random graph model
for massive graphs. In STOC ’00: Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 171–180, New York, NY, USA,
May 2000. ACM Press. http://www.math.sc.edu/~lu/papers/random.pdf

[2] Réka Z. Albert and Albert-László Barabási. Statistical mechanics of com-
plex networks. Reviews of Modern Physics, 74(1):47–96, January 2002.

arXiv:cond-mat/0106096

[3] Luís A. Numes Amaral, Antonio Scala, Marc Barthélémy, and H. Eugene
Stanley. Classes of small–world networks. Proceedings of the National
Academy of Sciences, 97(21):11149–11152, October 2000.

arXiv:cond-mat/0001458

[4] Albert-László Barabási and Réka Z. Albert. Emergence of scaling in ran-
dom networks. Science, 286(5439):509–512, October 1999.

arXiv:cond-mat/9910332

[5] Albert-László Barabási, Hawoong Jeong, Zoltan Néda András Schubert,
and Tamés Vicsek. Evolution of the social network of scientific collabora-
tions. Physica A, 311(3–4):590–614, August 2002. arXiv:cond-mat/0104162

[6] Alain Barrat and Martin Weigt. On the properties of small–world network
models. European Physical Journal B, 13(3):547–560, January 2000.

arXiv:cond-mat/9903411

[7] Vladimir Batagelj and Andrej Mrvar. Networks / Pajek, Program for
Large Network Analysis, September 2005.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

[8] Richard Bellman. On a routing problem. Quarterly of Applied Mathemat-
ics, 16(1):87–90, 1958.

1 References of the form arXiv:xxxxxxxx/yyyyyyy can be retrieved directly from the arXiv.org
e–Print archive via http://arxiv.org/abs/xxxxxxxx/?yyyyyyy or one of its mirrors.

111

112 BIBLIOGRAPHY

[9] Norman L. Biggs. Algebraic graph theory, volume 67 of Cambridge Tracts
in Mathematics. Cambridge University Press, London, New York, 1974.

[10] Béla Bollobás. Degree sequences of random graphs. Discrete Mathematics,
33(1):1–19, January 1981. http://dx.doi.org/10.1016/0012-365X(81)90253-3

[11] Béla Bollobás. Random Graphs. Academic Press, London, UK, 1985.

[12] Béla Bollobás and Oliver Riordan. The diameter of a scale–free random
graph. Combinatorica, 24(1):5–34, January 2004.

http://www.math.cornell.edu/~durrett/math777/diamSF.pdf

[13] Sergey Brin and Lawrence Page. The anatomy of a large–s1cale hyper-
textual web search engine. Computer Networks and ISDN Systems, 30(1–
7):107–117, April 1998. http://www-db.stanford.edu/pub/papers/google.pdf

[14] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan,
Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet L.
Wiener. Graph structure in the web. Computer Networks, 33(1–6):309–
320, 2000. http://www9.org/w9cdrom/160/160.html

[15] Fan Chung and Linyuan Lu. The diameter of sparse random graphs.
Advances in Applied Mathematics, 26(4):257–279, May 2001.

http://www.math.ucsd.edu/~fan/dia.pdf

[16] Reuven Cohen and Shlomo Havlin. Scale–free networks are ultrasmall.
Physical Review Letters, 90(5):058701/1–4, February 2003.

arXiv:cond-mat/0205476

[17] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

http://dz-srv1.sub.uni-goettingen.de/sub/digbib/loader?did=D196313

[18] Roger C. Entringer, Douglas E. Jackson, and David A. Snyder. Distance
in graphs. Czechoslovak Mathematical Journal, 26(2):283–296, June 1976.

[19] Paul Erdös and Alfréd Réyni. On random graphs. Publicationes Mathe-
maticae, 6:290–297, 1959.

[20] Ayman Farahat, Thomas Lofaroa, Joel C. Miller, Gregory Rae, and Les-
ley A. Ward. Existence and uniqueness of ranking vectors for linear link
analysis. SIAM Journal on Scientific Computing, 2004. Submitted April
2004.

[21] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23(98):298–305, 1973.

113

[22] Agata Fronczak, Piotr Fronczak, and Janusz A. Hołyst. Mean–field theory
for clustering coefficients in Barabási–Albert networks. Physical Revue E,
68(4):046126/1–4, October 2003. arXiv:cond-mat/0306255

[23] Agata Fronczak, Piotr Fronczak, and Janusz A. Hołyst. Average path
length in random networks. Physical Revue E, 70(5):056110/1–7, Novem-
ber 2004. arXiv:cond-mat/0212230

[24] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, MD, USA, 2nd edition, 1989.

[25] Google Inc. The Google timeline, December 2004.
http://www.google.com/intl/en/corporate/timeline.html

[26] Ramesh Govindan and Hongsuda Tangmunarunkit. Heuristics for internet
map discovery. In IEEE INFOCOM 2000, volume 3, pages 1371–1380, Tel
Aviv, Israel, March 2000. IEEE.

http://www.isi.edu/div7/publication_files/heuristics.pdf

[27] Geoffrey Grimmett. Percolation. Springer, Berlin, Germany, 2nd edition,
1999.

[28] Frank Harary. Status and contrastatus. Sociometry, 22(1):23–43, March
1959. http://links.jstor.org/sici?sici=0038-0431(195903)22:1<23:SAC>

[29] Frank Harary and Robert Z. Norman. The dissimilarity characteristic of
husimi trees. The Annals of Mathematics, 58(1):134–141, July 1953.

http://links.jstor.org/sici?sici=0003-486X(195307)2:58:1<134:TDCOHT>

[30] Taher H. Haveliwala and Sepandar D. Kamvar. The second eigenvalue of
the google matrix. Technical Report 2003-20, Stanford University, Depart-
ment of Computer Science, March 2003. http://dbpubs.stanford.edu/pub/2003-20/

[31] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, UK, 1985.

[32] Takashi Ito, Kosuke Tashiro, Shigeru Muta, Ritsuko Ozawa, Tomoko
Chiba, Mayumi Nishizawa, Kiyoshi Yamamoto, Satoru Kuhara, and
Yoshiyuki Sakaki. Toward a protein-protein interaction map of the bud-
ding yeast: A comprehensive system to examine two-hybrid interactions
in all possible combinations between the yeast proteins. Proc. of the Nat.
Academy of Sciences of the USA, 97:1143–1147, February 2000.

http://biology.uark.edu/ipinto/biol5334/17.pdf

[33] Camille Jordan. Sur les assemblages de lignes. Journal für die reine und
angewandte Mathematik, 70:185–190, 1869.

114 BIBLIOGRAPHY

[34] Lester R. Ford Jr. Network flow theory. Paper P–923, The RAND Cor-
peration, Santa Moncia, CA, USA, August 1956.

[35] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

http://www.cs.cornell.edu/home/kleinber/auth.pdf

[36] Florian Knorn. Supplementary material to this Studienarbeit, September
2005. http://www.florian-knorn.com/index.php?nav=work&cat=stud

[37] Amy N. Langville and Carl D. Meyer. Deeper inside PageRank. Internet
Mathematics, 1(3):335–380, 2004.

http://www.internetmathematics.org/volumes/1/3/Langville.pdf

[38] Amy N. Langville and Carl D. Meyer. A survey of eigenvector methods
of web information retrieval. SIAM Review, 47(1):135–161, March 2005.

http://meyer.math.ncsu.edu/Meyer/PS_Files/Survey.pdf

[39] Ney Lemke, Fabiana Herédita, Cláudia K. Barcellos, Adriana N. dos Reis,
and José C. M. Mombach. Essentiality and damage in metabolic networks.
Bioinformatics, 20(1):115–119, January 2004.

http://www.inf.unisinos.br/~mombach/Ecoli.pdf

[40] Bo Lewin, editor. Sex i Sverige. Om sexuallivet i Sverige 1996 [Sex in
Sweden. About Sex habits in Sweden in 1996]. Statens Folkhälsoinstitut
[Swedish National Institute of Public Health], Stockholm, Sweden, 1998.

[41] Fredrik Liljeros, Christofer R. Edling, Luís A. Nunes Amaral, H. Eugene
Stanley, and Yvonne Åberg. The web of human sexual contacts. Nature,
411(6840):907–908, 2001. arXiv:cond-mat/0106507

[42] David G. Luenberger. Introduction to Dynamic Systems. Theory, Models
& Applications. John Wiley & Sons, New York, NY, USA, 1979.

[43] Carl D. Meyer. Matrix analysis and applied linear algebra. SIAM, Philadel-
phia, PA, USA, 2000.

[44] Stanley Milgram. The small world problem. Psychology Today, 1(2):60–
67, May 1967.

[45] Joel C. Miller, Gregory Rae, Fred Schaefer, Lesley A. Ward, Thomas Lo-
Faro, and Ayman Farahat. Modifications of Kleinberg’s HITS algorithm
using matrix exponentiation and web log records. In SIGIR ’01: Proceed-
ings of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 444–445, New York, NY,
USA, 2001. ACM Press. http://www.damtp.cam.ac.uk/user/jcm52/pubs/sigir.pdf

115

[46] Bohan Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial
Theory Series B, 47(3):274–291, December 1989.

http://dx.doi.org/10.1016/0095-8956(89)90029-4

[47] Bohan Mohar. Combinatorics, and Applications, volume 2, pages 871–898.
John Wiley and Sons, New York, NY, USA, 1991. Y. Alavi, G. Chartrand,
O. R. Ollerman and A. J. Schwenk (ed.).

[48] Cleve Moler. The world’s largest matrix computation. Matlab News and
Notes, October 2002.

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/oct02_cleve.html

[49] Mark E. J. Newman, Cris Moore, and Duncan J. Watts. Mean–field
solution of the small–world network model. Physical Review Letters,
84(14):3201–3204, April 2000. arXiv:cond-mat/9909165

[50] Mark E. J. Newman, Steven H. Strogatz, and Duncan J. Watts. Random
graphs with arbitrary degree distributions and their applications. Physical
Revue E, 64(2):026118/1–17, August 2001. arXiv:cond-mat/0007235

[51] Andrew Y. Ng, Alice X. Zheng, and Micheal I. Jordan. Link analysis,
eigenvectors and stability. In IJCAI ’01: Proceedings of the 17th Interna-
tional Joint Conference on Artificial Intelligence, pages 903–910, August
2001. http://www.cs.berkeley.edu/~ang/papers/ijcai01-linkanalysis.pdf

[52] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford University, Department of Computer Science, November
1999. http://dbpubs.stanford.edu/pub/1999-66/

[53] Francesco Rao and Amedeo Caflisch. The protein folding network. Journal
of Molecular Biology, 342(1):299–306, September 2004.

arXiv:q-bio.BM/0403034

[54] Sidney Redner. How popular is your paper? An empirical study of the
citation distribution. European Physical Journal B, 4(2):131–134, July
1998. arXiv:cond-mat/9804163

[55] Antonio Scala, Luís A. Numes Amaral, and Marc Barthélémy. Small–
world networks and the conformation space of a short lattice polymer
chain. Europhysics Letters, 55(4):594–600, August 2001.

arXiv:cond-mat/0004380

[56] Jean Schmith, Ney Lemke, José C.M. Mombach, Patrícia Benelli, Cláu-
dia K. Barcellos, and Guilherme B. Bedin. Damage, connectivity and
essentiality in protein–protein interaction networks. Physica A, 349(3–

116 BIBLIOGRAPHY

4):675–684, April 2005. http://www.inf.unisinos.br/~mombach/protnetv2.pdf

[57] Peter J. Slater. Maximum facility location. Journal of Research of the
National Bureau of Standards B, 79:107–115, 1975.

[58] Daniel A. Spielman. Spectral graph theory and its applications. Lecture
notes, September 2004. http://www-math.mit.edu/~spielman/eigs/

[59] Peter Uetz and Loic Giot. A comprehensive analysis of protein–protein
interactions in saccharomyces cerevisiae. Nature, 403:623–627, February
2000. http://www.nature.com/nature/journal/v403/n6770/full/403623a0_fs.html

[60] Alexei Vázquez, Romualdo Pastor–Satorras, and Alessandro Vespignani.
Internet topology at the router and autonomous system level. arXiv
e–Print, June 2002. arXiv:cond-mat/0206084

[61] Michele Vendruscolo, Nikolay V. Dokholyan, Emanuele Paci, and Martin
Karplus. Small–world view of the amino acids that play a key role in
protein folding. Physical Revue E, 65(6):061910/1–4, June 2002.

http://dokhlab.unc.edu/papers/vdpk_pre02.pdf

[62] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small–
world’ networks. Nature, 393(6684):440–442, June 1998.

http://tam.cornell.edu/SS_nature_smallworld.pdf

[63] Stefan Wuchty and Peter F. Stadler. Centers of complex networks. Journal
of Theoretical Biology, 223(1):45–53, July 2003.

http://www.nd.edu/~swuchty/Download/center.pdf

[64] Haiyuan Yu, Dov Greenbaum, Hao X. Lu, Xiaowei Zhu, and Mark Ger-
stein. Genomic analysis of essentiality within protein networks. Trends in
Genetics, 20(6):227–231, June 2004.

http://papers.gersteinlab.org/e-print/essen/reprint.pdf

[65] Haiyuan Yu, Dov Greenbaum, Hao X. Lu, Xiaowei Zhu, and Mark Ger-
stein. Supplementary material to [64], February 2004.

http://bioinfo.mbb.yale.edu/network/essen/Sup.pdf

